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ABSTRACT

In the tactical arena, the timely receipt of imagery is of highest priority. Lossy
compression of the imagery for transmission increases the ability to provide imagery in a
timely fashion. In the reconstruction of this imagery, some distortion is acceptable as
long as the ability to extract relevant information is retained. This thesis is an
independent assessment of four image compression algorithms (Joint Photographic
Experts Group (JPEG) Compression, Wavelet Compression, Fractal Compression and the
compression algorithm contained in the Navy TENCAP sponsored Radiant Tin Program)
for their ability to provide an imagery product of sufficient quality which meets the
requirements of tactical users.

The quantitative analysis shows that most quantitative measures are not useful for
rating compression methods. In the qualitative assessment, using the Analytic Hierarchy
Process, Wavelet Compression appears to be the best choice of compression method
across the various compression ratios. JPEG does very well at low ratios of compression
as expected. Similarly, the Radiant Tin algorithm does very well at high ratios of
compression. In the application of tactical imagery, Fractal Compression does not seem

to be a good choice.
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I. INTRODUCTION

A. THE NEED FOR IMAGE COMPRESSION

Today's tactical commander must make better decisions faster than ever before.
One of the resources the commander can use to aid in these decisions is imagery.
Imagery can provide information regarding enemy troop strength and movement, the
enemy industrial base, terrain mapping for deployment of Marines and Special Forces,
Battle Damage Assessment and weather over intended targets. Technology has
essentially placed this imagery and more at the commander's fingertips. The increased
use of imagery, by a variety of users reaching down to the individual
Sailor/Marine/soldier/airman in the field has precipitated the need for image compression.

Imagery comes from a variety of sources ranging from large space-based collectors
to hand-held digital cameras carried by a SEAL team or Marine reconnaissance unit.
Imagery collected from space-based resources is useful for both scientific and tactical
purposes. Scientific uses of imagery collected from space based sensors include remote
sensing of the earth and its atmosphere and interplanetary exploration missions such as
Voyager, the Mars Observer, Clementine and Galileo. Inherent to scientific research, a
tight level of control over error is required so that results are not distorted.

Images require large numbers of bits to represent them digitally. For example, a
small SPOT image, which is 5196 pixels x 5196 pixels, using 8 bits per pixel requires
2.16 x 10° bits or approximately 27 Megabytes to represent the image (Internet SPOT
page). A modest number of images can quickly take up the hard disk capacity of the
typical personal computer.

In the tactical arena, imagery from both space-based collectors and other sources is
potentially useful to the tactical commander. The essential problem with tactical uses of
imagery is that of timeliness. Images for tactical applications require high data rate and
high bandwidth communications for transmission in their uncompressed form in a timely
manner. This is particularly important for the tactical commander who requires some

forms of imagery in near real-time. Additionally, disadvantaged users, (such as




submarines, SEAL teams and Marine Reconnaissance Units), are exposed for too long a
time to transmit substantial amounts of imagery. As such, image compression has

become increasingly important to meet these requirements.

B. WHAT IS IMAGE COMPRESSION?

Image compression is the means of encoding a data stream, representing an image,
using a reduced number of bits. All image compression/decompression systems contain
two basic parts, an encoder and a decoder (Figure 1.1). The encoder may encode the data

using a lossy or a lossless algorithm.

Source Compressed Reconstr.

——»| Encoder |——»| Decoder [—»
Image Image Image
Data Data Data

Figure 1.1 Generic Image Compression System (Pennebaker and Mitchell, p. 66)

Inherent to each image is some amount of redundant information. Lossless
compression algorithms encode this redundancy in a smaller number of bits than were
used in the original image. The reconstructed image is numerically identical to the
original image on a pixel-by-pixel basis. (Rabbani, p.6 ). Lossy compression not only
compresses the redundant information but also compresses some of the unique
information in the image. The reconstructed image is then an approximation of the
original image. (Rabbani, p.6). While the difference between the reconstructed and
original images may possibly be statistically significant, the interpretability of the image
may not suffer. Figure 1.2 describes graphically the difference between lossless and lossy
compression as well as a graphical explanation of the compression ratio. The goal of
lossy compression then is to design a compression algorithm where the errors in the

reconstructed image are not critical to the exploitation of information from the image.
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Figure 1.2 Relationship between lossless and lossy compression
and the compression ratio (Beser, p. 210)

While lossless imagery may be the ideal, it is generally not practical since the
lossless algorithm is driven by the information rate (discussed in Chapter II), and, the
compression ratios are typically low. Additionally, this translates into a larger data set
requiring more time and larger bandwidth to transmit. As such, some differences in the
reconstructed image are usually acceptable to provide the time of response required and
to satisfy bandwidth constraints. Therefore, lossy compression is the prevalent means of

compressing tactical imagery.

C. PURPOSE

Research work in image compression is very popular, particularly as the
"information highway" continues to expand. Similarly, imagery has taken on an
increasingly important role in all facets of military strategy and planning. In the tactical
arena, timeliness of the imagery is of highest priority. Lossy compression of the imagery
for transmission increases the ability to provide imagery in a timely fashion. In the
reconstruction of this imagery, some distortion is acceptable as long as the ability to
extract relevant information is retained. This thesis provides an independent assessment
of four image compression algorithms for their ability to provide an imagery product of

sufficient quality to meet the requirements of tactical users.




D. THESIS LAYOUT

Chapter II discusses the fundamentals of image compression along with basic
definitions. Chapter III contains a survey of the four methods of image compression that
will be examined in this thesis:

* International Standards Organization Joint Photographic Experts Group

(ISO-JPEG) Compression;

¢ Wavelet Compression;

¢ Fractal Compression; and

+ Navy TENCAP's Radiant Tin.

The criteria used for the selection of tactical imagery and the tactical applications
for imagery are discussed in Chapter IV. A survey of image compression quality
measures is contained in Chapter V. This survey will include a discussion of both
subjective and quantitative measures. Chapter VI contains an analysis of the ability of
each of the four compression methods to satisfactorily compress imagery for tactical uses.
The results of the analysis are contained in Chapter VII. Additionally, recommendations
are provided that detail when each method is appropriate for use based on the ability to

extract tactical information from the reconstructed image.




II. IMAGE COMPRESSION FUNDAMENTALS

The lossy compression of imagery is performed in a three step process. This

process is shown in Figure 2.1.

Input Transform —* Quantize —» Code Compressed
Image Image

Figure 2.1 Generic Image Compression Algorithm

Lossless algorithms follow a similar process eliminating the quantizing step. This
chapter will take each step and describe it in a generic manner so that the discussion of

particular compression algorithms in Chapter III may draw on this background.

A. TRANSFORMATION

The transform coding process is designed to take an N x N pixel image and to
divide it into n x n smaller blocks. Each of these blocks is then processed using a unitary
transform. .A unitary transform being a "reversible linear transform whose kernel
describes a set of complete, orthonormal discrete basis functions (Rabbani, p. 102)."
This serves to redistribute the signal energy into just a few coefficients. The other
coefficients can either be discarded in the quantization step or can be very efficiently
coded using lossless means. The unitary transform step may be viewed in one of two

fashions; as Coordinate Axes Rotations or as Basis Function Decompositions.

1. Coordinate Axes Rota‘tion

Generally, adjacent pixel values are highly correlated. If the original image is
subdivided into 1 x 2 pixel blocks, each of these vectors would represents a pair of
adjacent pixels. If each of these pixel pairs were plotted in a 2-dimensional coordinate
system (X, , X, ) the majority of the points would lie on the 45° diagonal defined by x, =

X, The variance defined along the direction x; ,where j=1,2, is defined as:




M
(1) o3= < E(xji—xj)z (Rabbani, p. 103)
where M is the total number of blocks in the image and ¥; is the mean value of x; over all
blocks. (Rabbani, p. 103) Unfortunately, the variance is large in both the x, and x,
directions (this is shown in Figure 2.2) and as such, if either x, or x, is encoded as the

corresponding mean, large reconstruction errors (Mean Squared Error) will result.

Y2

Figure 2.2 Example of a Rotation Transform (Rabbani, p. 104)

If, however, each of these vectors is rotated to a new set of axes (y,, y, ) in the

following manner:

yi f_af U1 |=x .
2) [y; ]_ ﬁ[—l 1][ x; ] (Rabbani, p. 104)

In matrix notation:
(3) Y = AX

A is the rotation matrix with equation 3 defining the forward transform. Upon

decoding on the receive end, the inverse transform will restore the original data. The

inverse transform is defined as:




X1 . 1 -1 i R . 1
(4) [xz ] J‘z‘[ L1 j'[ - ]( abbani, p. 105)
or alternately as:

(5) =BY where B=A"

In the original orientation 62, =o2,. However in the transformed orientation
o2, >> o2, and as such, if y,is replaced with its mean value (being 0) the mean squared
error which results (62,) is significantly smaller than either 62, or 6Z,. Now that many of
the coefficients are O (i.e., contain little energy) they can be efficiently coded using the

methods described in Section D. (Rabbani, p. 105)

2. Basis Function Decomposition

Using equation 5 above leads to the viewing of transforms as Basis Function
Decompositions. The columns of the B matrix can be seen as discrete orthogonal basis
functions. These basis functions when weighted by the Y matrix and added together
return the original data matrix X. Each type of image transform has it's own set of basis
functions. These functions can be used as elementary components in representing an

image, given the corresponding transform coefficients. (Rabbani, p. 106)

B. TYPES OF TRANSFORMATION CODING

1. Frequency Transformation

There are several methods of frequency transformation, two of which are often
described in the literature: the Discrete Fourier Transform (DFT) and the Discrete Cosine
Transform. As the DFT is generally used for spectral analysis and filtering, only the
Discrete Cosine Transform will be discussed. Descriptions of the DFT as well as other
methods may be found in the references.

The Discrete Cosine Transform (DCT) is a classic example of transformation.
The N x N image is first divided into n x n blocks. Each block is then placed through the

Forward Discrete Cosine Transform which is defined as:




(6)  Fluv)="2L "5: b T fl ke s[ 2= Neos[ E52% | (Rabbani, p. 108)

where u and v are the horizontal and vertical indices of the transformed block and | and k
being the horizontal and vertical indices of the original block. F(u,v) is the pixel value at
the position u,v in the transformed block and f(j,k) is the pixel value at the position j.k in

the original block. C(u) and C(v) are defined as:

7 L for u,v = 0 and 1 otherwise
2

An example of this transform using an 8 x 8 sub-block is shown in Tables 2.1

and 2.2. Table 2.1 is the original block, while Table 2.2 is the transformed block.

j=0 j=1 j=2 j=3 j=4 J=5 j=6 j=7
k=0 139 144 149 153 155 155 155 155
k=1 144 151 153 156 159 156 156 156
k=2 150 155 160 163 158 156 156 156
k=3 159 161 162 160 160 159 159 159
k=4 159 160 161 162 162 155 155 155
k=5 161 161 161 161 160 157 157 157
k=6 162 162 161 163 162 157 157 157

k=7 162 162 161 161 163 158 158 158
Table 2.1 Original 8 x 8 Image Block (Rabbani, p. 116)

u=0 u=1 u=2 u=3 u=4 u=5 u= u=
v=0 315 0 -3 -1 1 -1 -1 0
v=1 -6 -4 -2 -1 -1 0 0 0
v= -3 -2 -1 1 0 0 0 0
V= -2 -1 0 0 0 0 0 0
v=4 0 0 0 1 0 0 0 0
v= 0 1 0 0 0 0 0
v=6 0 0 0 0 0 1 0 0
V= -1 1 1 -1 1 0 0 0

Table 2.2 Transformed 8 x 8 Block

The Inverse Discrete Cosine Transform is defined as:
8 k= z z C(u)C(V)F(u, v)cos[‘z“”““]cos[@‘—;-n”ﬂ] (Rabbani, p. 108)

8




F(u,v), f(j,k), C(u), and C(v) are defined as above.
Upon application of the Inverse DCT, the pixel values in the original block are

restored.

2. Other Types of Transformation

There are several other types of algorithms. These transforms are not transforms in
the sense of the previous definition, however, they still change the data in some fashion

so that it may be coded in an efficient manner.

a. Spatial Transformation

Spatial transformation is based on the fact that there is a high correlation
between adjacent pixels in a typical image. Spatial transformation uses predictive coding
techniques which use this statistic to their advantage. The most common spatial
transformation technique is Differential Pulse Code Modulation.

There are two versions of Differential Pulse Code Modulation (DPCM), lossy
and lossless. Both algorithms use the same transformation step. Each pixel is predicted
using an m-order predictor. This means that there are m pixels used in a linear
combination to form the predictor. A difference image is then created which is made up
of the differences between the pixel value and its predictor. Typically, a single-predictor
is used for the entire image. For the following example, the 3rd order predictor
0.75A-0.5B+.75C is used. A is the value to the left of the pixel to be predicted, B is the

value to the upper left and C is the value above the pixel to be predicted.

139 144 149 153
144 151 153 156
150 155 160 163
159 161 162 160
Table 2.3 Original Pixel Block
0 0 0 0
0 146.5 153 155
0 153.75 155.5 160.5
0 160.5 163.25 163.75

Table 2.4 Pixel Predictors for the Pixels in Table 2.3




139 144 149 153
144 4.5 0 1
150 1.25 4.5 2.5
159 0.5 -1.25 -3.75

Table 2.5 Difference Image

The difference image (with the exception of those coefficients in the first row
and column which are transmitted separately) will change the image statistics from an

arbitrary distribution to a Laplacian Distribution with mean of zero. (Figure 2.3)

40 v

35 +

30 T+

25 T

20 +

Number of pixels (x10%)

s .
+ + t T t t t t t
-125 -100 -75 -50 .25 0 25 50 7% 100 125

Code value

Figure 2.3 Differential Image Histogram (Rabbani, p. 61)

Lossless coding of the differential image is then done using the methods
described in Section D. Lossy coding of the differential image is done by first quantizing

the values in the difference image (Section C) and then coding using the methods in

Section D.

b. Symbolic Transformation

Symbolic transformation is an innovative technique that is particularly useful in
imagery containing man-made objects. The image is converted from its original pixel

space representation to a symbol space representation. This conversion extracts features
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such as edges, arcs and textures and then converts them into symbols. These symbols are
then coded separately from the background. Upon receipt and restoration of the
background of the image, the symbols are then decoded and replaced in the image. The
Radiant Tin algorithm is an example of symbolic transformation and is explained in

Chapter HI.

C. QUANTIZATION

Quantizers are staircase functions that take a variety of input values and map them
into a finite number of output values. Quantizers may be based on either statistical or
human visual system characteristics. Two methods of quantization will be discussed: the
Lloyd-Max Quantization and Vector Quantization. Other methods may be found in the

references.

1. Lloyd-Max Quantizer

The Lloyd-Max quantizer is based on minimizing the Mean Square Error between
the original and quantized values. The quantizer maps the original values (from possibly
a continuous source) into discrete "quantized" values termed reconstruction levels. The
range of values that are mapped into these reconstruction levels are termed decision
levels. (Rabbani, p. 84)

The derivation of the Lloyd-Max quantizer is based on minimizing the following

equation on both d (the decision levels) and r (the reconstruction levels).

N1 Firl
(99 D= EO J (e—ri)’p.(e)de (Rabbani, p. 84)
1 d‘,

e is the differential image and p,(e) is the distribution of the pixel values to be quantized.
The solution gives decision levels "halfway between the neighboring reconstruction

levels and reconstruction levels that lie at the center of the mass of the probability density

enclosed by the two adjacent decision levels." The mathematical solution to this is:

ri-y+r;

(10) d;=-=— (Rabbani, p. 84)
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dis
J epe(e)de

(11) r,-=:_"]—— (Rabbani, p. 84)

J’ Pe(e)de
d;

Typically these equations will not yield closed-form solutions and must be solved
using numerical techniques. In some circumstances (such as a Laplacian probability
density function) a closed form solution does exist. Given a Laplacian density and a 3-bit

quantizer the decision and reconstruction levels are listed in Table 2.6 and shown in

Figure 2.4.
i |(di,dix1) o ri Probability
0 |(-255,-16) = —20 0.025
1 |(-16,-8) = -11 0.047
2 |(-8,-4)—>—6 0.145
3 ((4,00—>-2 0.278
4 1(0,4)—>2 0.283
5 |(4,8)—>6 0.151
6 |(8,16) > 11 0,049
7 {(16,255) = 20 0.022

Table 2.6 8-level Lloyd-Max Quantizer (Rabbani, p. 86)

Pe(e)

Figure 2.4 8 level Lloyd-Max Quantizer (Rabbani, p. 86)
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2. Vector Quantization

Vector quantization is based on the use of a predetermined codebook for encoding.
The image is first divided into fixed size vectors of pixels. These vectors are then
compared against the codebook The index of the vector is then transmitted which is
where the compression is realized. The key to this technique is "training" the codebook.
This "training" involves processing a variety of test imagery that best represents the
imagery that will be compressed. From this test imagery, the codebook of vectors that
represent the most common vectors is generated. While several algorithms have
been-used, the Linde-Buzo-Gray algorithm is the generally accepted algorithm. In-depth

discussion of Vector Quantization may be found in the references. (Rabbani, p. 145)

D. CODING

The coding step is where the compression of the data stream actually occurs. The
amount of compression is based on the entropy of the data stream. Entropy being the
amount of original (i.e., non-redundant) information in the data stream. Shannon defined

entropy as:
L-1
(12) Entropy = -EO pilog,p; bits per symbol

In lossless coding methods, each symbol is encoded with a number of bits that
equals or exceeds the entropy. In lossy coding methods, each symbol is encoded with

fewer bits than the entropy.

1. Entropy Coding

a. Huffman Coding

Huffman Coding is a variable length code. It is based on giving the characters
with the higher probability of occurrence the shorter code, and those with lower
probabilities of occurrence the longer code. There are two basic restrictions placed on the
formation of the code; first, no two characters will consist of identical codes and second,
each code will be constructed such that no additional indication is necessary to specify

where a code begins and ends once the starting point is known (Huffman, p. 1098).
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The procedure for generating the Huffman code is relatively simple and is

diagrammed in Figure 2.5.
¢ Stage 1: The two free nodes with the lowest frequency are located. A parent
node is created by assigning a weight equal to the sum of the two child nodes. The
left most child node is given a "0" code and the right most node is given a "1" code.
(Step 1 in Figure 2.5)
¢ Stage 2: The parent node then replaces the two child nodes and Step 1 is

repeated until only one free node remains. (Steps 2 - 4 in Figure 2.5)

of 1 0|1 D}]1
1" 13 "
7 6 6 5

15 7 6 6 5 19
A B c D E A B cC D E

Step 1

01
ol1 201
13 "

15 7 6 6 5
A B c D E

Step 3 Step 4

Figure 2.5 Pictorial Representation of Huffman Coding (Beser)

This results in the following coding scheme:

Symbol Code
A 0
B 100
C 101
D 110
E 111

Table 2.7 Huffman Coding Scheme (Beser)

Decoding a given bit stream is relatively simple. Given a starting point, the bit

stream is followed until a recognized code is found. Once found, the process is repeated
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until the stream is decoded. For example, using the above coding scheme and the bit
stream 11011101101010100, from left to right the stream would be decoded into:

110 111 0 110 101 O 100

D E A D C A B (Beser).

b. Arithmetic Coding

The process of arithmetic coding is relatively simple. It begins with a particular
data "message” that is represented on the interval [0,1). As each symbol is coded the
interval used to represent it becomes smaller as its bit representation grows. The symbols
with smaller probabilities of occurrence reduce the interval substantially while the
symbols with greater probability of occurrence reduce the interval by small amounts. - The
process is best shown by an example. (Witten, Neal and Cleary, p. 521)

The encoding process begins with the interval being initialized to [0,1). For this

example the following probabilities will be used:

Symbol Probability Range
a 0.2 [0,0.2)
e 0.3 [0.2.0.5)
i 0.1 [0.5, 0.6)
) 0.2 [0.6, 0.8)
u 0.1 [0.8,0.9)
! 0.1 [0.9, 1.0)

Table 2.8 Example Probability Distribution of Symbols (Witten, Neal, Cleary p, 521)

To encode the message eaii!

The interval [0,1) is divided into 6 pieces, with each piece corresponding
proportionally to the probabilities in Table 2.8. Since the first character to be encoded is
an e, the interval becomes [0.2, 0.5). This interval is then subdivided into pieces
corresponding again to the probabilities above. The second character reduces the interval
to [0.2, 0.26). The process is continued until the entire string is coded with the final
interval being [0.23354, 0.2336). The step by step process is shown in Table 2.9.
(Witten, Neal and Cleary, p. 522)
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Symbol Low High
0 1
e 0.2 0.5
a 0.2 0.26
i 0.23 0.236
i 0.233 0.2336
! 0.23354 0.2336

Table 2.9 Example Arithmetic Coding Steps (Witten, Neal and Cleary, p. 522)

Then encoding process can be summed up by the following piece of code:

low = 0.0;
high =1.0;
while ((c=getc(input))!=EOF){
range = high - low;
high = low + range*high_range(c);
low = low + range*low_range(c);
}
output(low); (Nelson, p. 126)
The decoding process is also simple. The following code showing the decoding

algorithm (end-of-string not being a consideration):

number = input_code();

for(;;){
symbol=find_symbol_straddling_this_range(number);

putc(symbol);
range = high_range(symbol) - low_range(symbol);
number = number - low_range(symbol);
number = number/range;
} (Nelson, p.127)
The decode algorithm only requires 1 of the 2 sides of the interval for decoding.

The message string from above would then be decoded step by step as follows:

Number Output Symbol Low High Range
0.23354 e 0.2 0.5 0.3
0.1118 a 0 0.2 0.2
0.559 i 0.5 0.6 0.1
0.59 i 0.5 0.6 0.1
0.9 ! 0.9 1 0.1
0

Table 2.10 Example Arithmetic Decoding Steps (Witten, Neal and Cleary, p. 522)
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¢. Run-length Coding

Run-length coding is designed to take advantage of redundancies in the data
stream. Images with a high level of neighboring pixel correlation will achieve high ratios
of compression, those with low levels of correlation will achieve, at worst, no
compression. The coding is accomplished by simply counting the number of repeating
symbols and replacing them with the symbol and the count. For example the string

"aaabcddddddeefggggg" would be encoded as 3a, b, ¢, 6d, 2e, f, 5g.

d. Zerotree Coding

Zerotree Coding is one of the newest coding methods. As this scheme was

designed for use in Wavelet compression, it will be discussed in Chapter III.

2. Sub-band Coding

Subband coding is the process where image data is filtered into a number of
images. Each of the resulting images contains only a particular band of frequencies from
the original image, thus the term subband. Each subband contains a reduced bandwidth
compared to the original image. The subbands used in Wavelet compression techniques

are the result of a two-dimensional, four band analysis bank shown in Figure 2.6.

m Dovruuupk‘ y11(m, n)
x 2alongn
Dowusample
| Downsasuple| via(m,n)
ha(n) x 2 along »
z{m,n)
m Downsamiple yai{m, n)
x 2 along n [
ha{m) Downsample
x 2 along m
Dowusample| yo3(m, n)
ha(n) x2alongn

Figure 2.6 2-D, four-band analysis bank (Rabbani, p. 174)
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The image is first placed through a high pass and a low pass filter. Each of the
resulting images is also placed through the same high pass and low pass filters. The
resulting four subbands, the result of the two-dimensional four-band analysis bank, the

image in Figure 2.7 results.

LL, HL,

LH, HH,

Figure 2.7 One pass through the 2-D four-band analysis bank (Shapiro, p. 3447)

Additional passes of the LL, subband through the analysis bank may be done to

further separate the subbands. This is shown in Figure 2.8.

LL, HL,

HL,
LH, | HH,

LH, HH,

Figure 2.8 Results after passing the LL, subband through the analysis bank (Shapiro, p. 3447)

The Low Pass/Low Pass subband (LL) is a reduced resolution representation of the
original image. Once the subbands have been established, the coefficients can then be

quantized and coded using the methods discussed above.
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1. IMAGE COMPRESSION ALGORITHM OVERVIEW

This chapter contains an overview of the four data compression methods that are
analyzed in this thesis: International Standards Organization Joint Photographic Experts
Group (ISO-JPEG), Wavelet Compression, Fractal Compression and the compression
algorithm contained in the Navy TENCAP Radiant Tin Program (hereafter referred to as
Radiant Tin compression). The basic methodology behind each algorithm is provided as a
background. Detailed discussion of the algorithms may be found in the references.

These particular methods were chosen for a variety of reasons. ISO-JPEG was
chosen as it is one of the compression algorithms selected by the National Imagery
Transmission Format Board for inclusion in their software and is formally documented in
the ISO Draft International Standard 10918 Part 1 (MIL-STD 188-198A, p.1). Wavelet
compression was chosen since the Central Imagery Office (CIO) is currently considering
its use for their low entropy compression requirements. Fractal compression was chosen
as it is used for compression of weather imagery and also as it is being investigated for use
on some Navy projects. Finally, Radiant Tin was chosen for its specific design to handle

and process tactical imagery at high ratios of compression.

A. JOINT PHOTOGRAPHIC EXPERTS GROUP (JPEG)

The International Organization for Standardization (ISO), the International
Telegraph and Telephone Consultative Committee (CCITT) and the International
Electrotechnical Commission (IEC) created the Joint Photographic Experts Group (JPEG)
to establish an international standard for image compression. The JPEG is a working
group made up of members from the three organizations. The JPEG standard consists of
four modes for compression of imagery: a baseline algorithm (sequential Discrete Cosine
Transform), a sequential lossless algorithm, a progressive DCT algorithm and a
hierarchical algorithm which uses elements from each of the other three methods. Figure
3.1 shows the relationship between the modes.
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Sequential . )
Progressive Sequential
peT DCT Lossless
(Baseline) — )
Hierarchical
P —

Figure 3.1 The four JPEG modes of operation (Pennebaker and Mitchell p.82)

1. Baseline JPEG

Baseline JPEG is the most common implementation of the JPEG standard. The
JPEG standard refers to this as Sequential DCT coding. The baseline JPEG algorithm

consists of the following steps:

a. Partitioning/Discrete Cosine Transform
The input image is first divided into 8 x 8 blocks of pixels. Each of these 8 x 8
blocks is then transformed using a two-dimensional forward Discrete Cosine Transform

(DCT). The forward DCT used in the JPEG standard is defined as:

cwem o l)\m (Qkt)vn
(13) F(uv)=="4= Z Zf(]k)cos L cos™

C(), C(v) = —Jrforuv 0;

C(u), C(v) = 1 for u,v # 0 (Pennebaker and Nhtchell p. 376)

As a result of this transformation, the average pixel value of the block is located
as the upper left coefficient of the block. This is referred to as the DC term. The

information contained in the other 63 coefficients, termed the AC coefficients, define the
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higher frequency components of the block. After the DCT, the majority of these

coefficients are zero or nearly zero and will be quantized to zero in the next step.

b. Normalization/Quantization

The next step in the baseline JPEG algorithm entails the normalization and
quantization (as discussed in Chapter II) of each of the 64 coefficients. This is
accomplished by applying a normalization array to the coefficients in the following manner

(Rabbani, p. 177):

F(u,v) ~ I-F(“,V)"'LQ(;'V)J

Quv) Q)

(14) F*(u,v) = Nearest integer

At this point, the 8 x 8 block is ready for coding. However, the coefficients are
not coded in a row by row fashion. Since the bulk of the information about the block is
contained in the upper left comer of the block, the coefficients are recorded using a

zig-zag pattern (ordered from O to 63) as shown in Figure 3.2.

Horizontal frequency

0—1 5—6 14—i15 27—28

////

2 13 16 26 29 42

I///////|

12 17 25 30 41 43

J S LSS S S S

w
[+ -]

Vertical frequency
AN
N\
AN
N\

35—36 48—49 57—58 62—63

Figure 3.2 Zig-Zag Encoding Sequence (Pennebaker and Mitchell p. 172)

This pattern was chosen since the probability of the coefficients being zero is an increasing
function of the index (Figure 3.3).
The zig-zag pattern thus maximizes the runs of zero coefficients which in tum

simplifies the coding process.
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Probability of being nonzero

Zigzag index

Figure 3.3 Probability of AC coefficient being zero (Pennebaker and Mitchell, p. 173 )

c. DC Coefficient - DPCM Coded
The DC coefficient is then coded using Differential Pulse Code Modulation

(DPCM). The process of DPCM coding is as described in Chapter II. The reason for this
is first, the DC coefficient is a weighted average of the 64 pixels and as such is a good
representation of the block as a whole. Additionally, there is generally a strong correlation

between this coefficient and the DC coefficient of adjacent blocks, therefore DPCM
coupled with a fixed Huffiman encoding is particularly efficient.

d. AC Coefficients — Huffman Coded
The other 63 coefficients are encoded using a version of Huffman coding as
shown in Rabbani, Pennebaker and Mitchell, Wallace and the ISO standard. First, each

non-zero coefficient is expressed in an eight bit representation ISINNNNSSSS) where the
4 most significant bits (NNNN) represent the number of zero coefficients between it and

the last non-zero coefficient. Run lengths of more than 16 zeroes are coded using more

than 1 symbol.
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For example if the coefficients were ordered in the following manner, 79 0 -2 -1
-1-100-1 EOB; and the -2 coefficient was the one being encoded, the 4 most significant
bits would be 0001 representing 1 zero between it and the previous non-zero coefficient
(being the 79).

The 4 least significant bits (SSSS) define in which category the amplitude of the

coefficient falls. The category (k) being defined as: k=Llog2(lcoeﬂicient|)_]+1. Where
1<k<10 for baseline JPEG.

Using the coefficient (-2) from before, k=2. Therefore the coefficient would be
encoded as 1 ="00010010," .

I='11110000,' represents a runlength of 16 zeroes and I=0 represents the end of
block. The end of block signifies that all remaining coefficients in the block are zero.
(Rabbani, p. 115)

These symbols (the 8-bit I's that represent the data stream) are Huffman coded
using standard look-up tables These fixed tables are optimized to a particular probability
distribution. If the image does not closely match this distribution, it is possible that the
coding will actually cause image expansion vice compression. Again using the tables from
Rabbani, the -2 coefficient is Huffman coded as '111001,".

Each Huffman character is appended by a sign bit (0 representing a negative
coefficient) and an additional k-1 bits representing the magnitude of the coefficient within
category k. So the final character transmitted to represent the -2 coefficient would be
'11100101,' . Once the entire image is encoded, it can be transmitted using standard

digital transmission techniques. (Rabbani, p. 120)

e. Image Reconstruction

Upon reception of the compressed image, the reconstruction of the image follows
the inverse process to the compression stage. The stream is first Huffman decoded using
the same standard tables that were used to encode the data stream. The stream is then
placed back into its 8 x 8 pixel representation and multiplied by the normalization/
quantizatidn matrix. The inverse DCT is then applied to the matrix resulting in an

approximation to the original image block.

23




7 7 e -
(15) =32 L C(u)C(v)F(u,v)cos(‘ﬁ%—) cos(“—“i;-;L)
-1 -0
C(u), C(v) = r foru,v=20;
C(u), C(v) = 1 otherwise (Pennebaker and Mitchell p. 376)

2. Lossless JPEG

Inherent in using a quantizing step with the DCT is some introduction of error to the
compressed and subsequently restored image. As there is a requirement in some
circumstances (e.g., medical imagery, as documented by DICOM 3, and scientific
imagery) for the exact image to be restored, ISO-JPEG established a lossless algorithm for
those applications. Additionally, as the NITF standard is the government standard for the
format of digital imagery and imagery products, the standard also establishes a lossless
JPEG standard (MIL-STD 188-198A). To make the algorithm generic and not restrictive
to the encoder and decoder design, a predictive coding method was chosen for the lossless
implementation of JPEG. Figure 3.4 shows the main steps in producing a losslessly

encoded image.

Lossless Encoder
Source Entropy Compressed
Image —  Predictor L — 9! pgoooder -p Image Data
Data
A
Table
Specifications

Figure 3.4 Lossless Mode Encoder Processing Steps (Wallace, p.7)

As discussed in Cilapter I, the first step in compressing an image is transforming the
pixel information. In the Lossless JPEG algorithm, this step is performed by predicting the
pixel value based on the values of the neighboring pixel values (similar to DPCM). The
Lossless algorithm is only concerned with the pixels shown in Figure 3.5 (x being the pixel
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to be predicted and a, b and ¢ being the neighboring pixels). This is because only pixels
that have been previously coded may be used as predictors since their values are available

to both the encoder and decoder. (Pennebaker and Mitchell p. 182)

Figure 3.5 Relationship between pixel and the predictor pixels (Pennebaker and Mitchell p.184)

Table 3.1 shows the prediction equations used by the Lossless JPEG algorithm.
Selection value 0 is used only for the hierarchical mode lossless coding. Selection 1 is
used as a predictor for the first row of pixels. The first pixél in each subsequent row is
predicted using selection 2. One of the remaining predictors is used to predict the

remaining pixels. The predictor chosen is sent in the scan header of the image.

Selection Value Prediction
0 no prediction
1 a
2 b
3 c
4 atb-c
5 a+((b-c)/2)
6 b+((a-c)/2)
7 (a+b)/2

Table 3.1 Predictors for lossless coding (Pennebaker and Mitchell p. 492)

Once the prediction value is determined, the difference between the predictor and
_the original pixel value is computed. This difference is then losslessly entropy-coded using
either Huffman coding or arithmetic Q-coding as described in Chapter II. Since there is
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no quantization step involved in this process, and the coding step is lossless, the algorithm
is then lossless.

In the decoder, the data stream is first entropy-decoded using the same Huffman or
arithmetic coding technique. The difference is then added to the prediction to determine
the original pixel value. Compression ratios of 2:1 are generally associated with the

Lossless JPEG compression algorithm. (Pennebaker and Mitchell p. 78)

3. Progressive JPEG

The progressive mode of JPEG uses the same Forward Discrete Cosine
Transformation and Quantization as in the baseline algorithm. The difference is that the
coefficients are encoded in multiple scans rather than a single pass as in baseline JPEG.
The first scan produces a rough version of the original. Each subsequent scan adds
additional quality to the received image. The benefit to this is that each scan takes a
relatively short time to transmit compared to the total transmission time. Additionally,
some information that can be extracted rapidly is readily available to the tactical
commander, rather than requiring an entire image to be transmitted before any evaluation
can occur. There are two methods of progressive coding, spectral selection and

successive approximation (Figure 3.6).

a. Spectral Selection

Spectral selection uses scans where only ome particular frequency band is
encoded at a time. The DCT coefficients are grouped into “spectral" bands of related
frequency and then transmitted.. The lower frequency bands are typically transmitted first
since this provides most of the rough detail of the image. The higher frequency
components provide the fine line and texture detail in the image.

b. Successive Approximation

Successive approximation is a process where the coefficients are not encoded to
their full accuracy in one pass. During the first pass a specified number of the most
significant bits are encoded and transmitted. On subsequent passes the remaining bits are

encoded and transmitted.
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Figure 3.6 Progressive Encoding Models (Wallace, p. 14)

4, Hierarchical JPEG

The hierarchical JPEG mode encodes the image data so that images of various
resolution levels can be restored on command. This provides the user with several
options. The tactical commander can browse lower resolution imagery and then request
those images of higher resolution, that he feels are useful. Additionally, the tactical

commander can browse imagery, increasing the resolution only to the point where he can
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exploit the information he requires. These approaches are a form of progressive coding.
The other option is that the image can be supported by a variety of output devices (e.g., a

high-quality printer ranging in resolution from 72 to 1200 dpi and a low-resolution video

screen with 72 dpi resolution).
The method of hierarchical JPEG coding is rather simple and can be summarized by

the following steps:

1. The original image is filtered and down-sampled by the desired number of
multiples of 2 in each dimension.
2. The reduced-size image is encoded using one of the three previously discussed

JPEG coding modes.
3. The reduced size image is decoded and then interpolated and up-sampled by 2
horizontally and/or vertically, using the identical interpolation filter that must

be used by the receiver.
4. Use the up-sampled image as a prediction of the original at this resolution, and
encode the difference image again using one of the three previously discussed

JPEG coding modes.
5. Steps 3 and 4 are repeated until the full resolution of the image has been

encoded.
Note that the encoding in steps 2 and 4 must be of the same type. (e.g., only DCT

processes or only lossless processes). This process is shown in Figure 3.7. (Wallace, p.

13)

Level 3
(N/8 x N/8)

Level 2
(N/4 x N/4)

Level 1
(N/2 x N/2)

/ Level 0

(N x N)
Original Image

Figure 3.7 Hierarchical Compression Pyramid Structure (Rabbani, p 193)
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5. Error Sources

There are several sources of error using the lossy implementations of JPEG. The
obvious first source would be the Discrete Cosine Transform. As most hardware
implementations use fixed precision, the use of the cosine function in the DCT will
introduce small errors into the transformed coefficients. These are particularly noticeable
on the inverse DCT since the input coefficients into the inverse DCT have been
additionally quantized on encoding.

The second and probably the largest source of error is a result of the normalization/
quantization step. The error in the quantization step is discussed in Chapter II. The error
introduced in the normalization step results from the use of the floor function. Any
precision maintained by the division step is removed by using this function. Errors
resulting from this step can be minimized by fine-tuning the normalization matrix used,
however, complete elimination of the error is not possible.

Finally, error can be introduced as a result of the transmission process. Lost and/or
modified bits can turn up in the received signal thus degrading the reconstructed image.
These errors are unavoidable and again can only be minimized by fine-tuning the particular
transmission process used or by using error detection and correction then retransmitting as

required.

B. WAVELETS

1. Wavelet Application of Subband Coding

Wavelet compression is one type of subband coding. Wavelet compression
implements the two-dimensional, four-band analysis bank in the form of Quadrature
Mirror Filters (QMFs). The QMFs allow for alias-free reconstruction in the absence of
coding errors. Additionally, the QMFs are designed to minimize overall amplitude and
phase distortion of the signal. (Rabbani, p. 170)

2. Quantization

The quantization step employs either staircase or vector quantization. These

quantization techniques are described in Chapter I
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3. Encoding
Once the wavelet coefficients have been quantized, they can then be coded by a
variety of methods. These range from the simplest, run-length coding, to one of the

newest forms of coding, zerotrees.

a. General Coding Methods

Run-length coding of the zero coefficients is one of the simplest coding methods.
This method takes a run of zeros and encodes the length of the run using either a fixed
codeword or using entropy coding. Generally, the remaining coefficients are not coded as
they typically do not exhibit any type of run structure.

Additionally, entropy coding methods (such as Huffiman or arithmetic coding) as
discussed in Chapter I may be employed.

b. Zerotree Coding

Zerotree coding is a method developed by Jerome Shapiro of the David Saroff
Research Center. Shapiro describes the zerotree coding algorithm in detail. Essentially a
hierarchical relationship (parents to descendants) of wavelet coefficients is established.
The subbands are arranged sequentially using a zig-zag pattern similar to that used in
JPEG. Coefficients are then encoded using the process in Figure 3.8 where a coefficient,

x, is insignificant with respect to a given threshold T if |x] <T.

4. Reconstruction of the Compressed Image

Reconstruction of the compressed image follows the inverse process. The received
data stream is first decoded using the inverse coding process. The output stream is then
put through a two-dimensional, four-band synthesis bank (Figure 3.9) where the

reconstructed image is the output.
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Figure 3.8 Flow chart for encoding a coefficient of the significance map (Shapiro, p. 3450)
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Figure 3.9 2-D, four-band synthesis bank (Rabbani, p. 175)
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5. Error Sources and Effects

Using Wavelet compression, there are several places in the algorithm where error
can be introduced. First would be in the subband coding process. Certain subbands that
do not meet a specified threshold can be discarded prior to the quantization stage. This
will obviously introduce errors since those subbands will not be present for the
reconstruction step. Additionally, the use of Quadrature Mirror Filters (QMF) introduces
some error into the signal. Inherent in the QMF is some amplitude distortion. Larger
filters will reduce the distortion but will however increase the computational load
(Rabbani, p. 173). Therefore tradeoffs must be made between acceptable error introduced
by the QMFs and the additional computational load resulting from the larger filter.

Second would be the quantizing step itself. The use of a standard staircase function
quantizer will force some of the smallest coefficients to zero and will reduce the precision
of others. The choice of the particular quantizer function is critical however. If the steps
are too large, an enormous amount of error can be introduced into the data stream. On
the other hand, if the steps are too small, the data stream may actually become larger than

the input data set.

Using the zero-tree coding method another source of error is introduced. Again, by
assigning a threshold which makes certain coefficients “insignificant," if their magnitude is
below that level, this will also remove some information from the data stream.

Finally, just as in JPEG and the other compression algorithms, the transmission
process can introduce some error. While none of the above errors can be eliminated,

fine-tuning in each of the steps can reduce the errors to a large extent.

C. FRACTAL COMPRESSION

1. How are Fractals Applicable to Image Compression?

Fractal image compression has been likened to a specially designed copying
machine. The classic illustration is shown as a copy machine which will take an input
image, reduce the image in half and then output the image in a particular array on the

copy. An example of this is shown in Figure 3.10. (Fisher, p. 2)
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O
Input Image Copy machine  Output Image

Figure 3.10 Copier Analogy (Fisher, p. 3)

Using this particular copying machine, if the output is then looped into the copier as
the next input image, the output will eventually converge on an image called the Sierpinski

triangle, Figure 3.11.

Figure 3.11 First three copies using copier in Figure 3.10 (Fisher, p. 4)

What makes this particular copying machine unique is that any initial input image
can be used and will result in the Sierpinski triangle. The Sierpinski triangle is termed the
attractor for this machine. The goal of fractal compression is to determine the
transformations required (the copying machine) in order to obtain the appropriate output
image.

In practice, affine transformations expressed as:

(16) w:'[;HZ 3][;]”{”




are used. These transformations can skew, stretch, rotate, scale and translate the input
image (Fisher, p. 3).

The use of this particular copy machine, however, requires that the desired output
image be made up of copies of itself that have been transformed using the above affine
transformations. This is to say the image has detail at every scale. This is the classical
definition of a fractal image. (Fisher, p.3)

Unfortunately, while many naturally occurring objects may be represented by fractal
images, there are a considerably larger number that cannot. While the images that the
tactical commander requires generally are not fractal images, there are portions of the
image that can be represented by larger portions of the image. Fractal compression is
therefore designed to reduce this redundancy and allow it to be represented using these
affine transformations.

Fractal compression, in general, is a relatively simple process. First the image is
partitioned into a number of groups of pixels termed ranges (R;). For each range, a larger
piece of the image, a domain (D, ), is sought that best approximates the range within a
given tolerance error (Flgure 3.12). The range may be represented by any onentatlon ofa
domain. While fixed size ranges and domains may be easily implemented, typically
different variations of this approach are chosen. These partitioning schemes are described

in the following Sections.
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Figure 3.12 Relationship between Domain and Range (Fisher, p. 12)
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2. Fractal Compression using Quadtree Partitioning

Quadtree partitioning is an approach to fractal compression where the ranges and
domains are of variable sizes. This is useful in that areas of detail in the image can be
represented by smaller ranges whereas large non-detailed regions (large expanses of
cloudless sky for example) can be represented by larger ranges.

In determining the ranges, the image is first taken as a whole. As it is generally not
well represented by a range that covers its entire dimension, the image is divided into 4
equal partitions. Each of these partitions is then examined to see if it can be represented
by a domain within the established tolerance level. Each domain is twice the size of the
range. The pixels in the domain are averaged in groups of four, reducing the domain to
the range size. The range is checked against all 8 possible orientations of the domain (90°
rotations of the domain and of the mirror image of the domain). The transformation of the
pixel values is found that will minimize the root mean square (rms) difference between the
transformed domain and actual range pixel values. Any partition that cannot be depicted
by a domain within the rms level is further subdivided into 4 partitions. This process then
continues until the entire image is represented (Figure 3.13). The accumulation of these
transforms is the encode (i.e., compression) of the image. (Fisher, p 16).

Unfortunately, the comparison of each range against all domains is time-consuming
and computationally intensive. In order to reduce the number of computations and to
reduce the period of time for encoding, all domains are classified before any ranges are
created. Once this is done, each range is first classified and then only compared against
domains with the same or similar classifications. This process significantly reduces the
number of comparisons made, thereby reducing the number of computations and the
amount of time required to compress the image.

Reconstruction of the compressed image is rather straight-forward. First, each
domain that has been mapped to a range is reduced by averaging each 2x2 group of ﬁixels.
This reduces the domain by 2 in each dimension. The new domain pixel values are
appropriately scaled and the associated offset value is applied. The domain is then placed,
as applicable, into the range. This process is iterated until additional iterations do not

change the reconstructed image or are below the given tolerance level. (Fisher, Ch 3)
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Figure 3.13 A quadtree representation of an image (Fisher, p. 56)

3. Fractal Compression using HV Partitioning

Fractal compression using HV partitioning uses a similar approach as that described
for compression using quadtree partitioning. First, the image is partitioned into two
rectangles. This is accomplished by determining the average pixel value for each row and
column in the image. Successive differences are calculated between the averages.
Applied to each of these differences is a linear biasing function. This consists of
multiplying each difference by the distance from the nearest side of the image. The
maximum magnitude of these results, either horizontally or vertically is where the partition
is made.

Again, similar to the quadtree approach, the ranges are compared against the
associated domains. Each domain is larger than the range it is compared against by either

a factor of 2 or 3. This factor can differ on each side. The domain pixels are averaged
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again in 2x2 blocks of pixels. The range is then represented by the domain giving the
smallest square difference within the given threshold. If no domain can satisfy this
constraint, the range is further partitioned using the same procedure as above. This
process is repeated until the image ranges are all represented by domains satisfying the
threshold or until the range size is smaller than the threshold.

There are several methods that Fisher mentions to speed up the algorithm. The first
of these is similar to the classification process described in quadtree partitioning. Each
domain and range is classified prior to search. Thus only domains that are in the same or
similar classification as the range are compared. The second method is termed "encoding
by range size." The largest range available is the first chosen for comparison. The largest
range is determined by the range having the largest, smaller dimension (e.g., a 10x8 range
will be compared against the domains prior to a 20x7 range.) This allows the ranges to be
mapped in decreasing size order thereby eliminating the repetition of domain
classifications.

Decompression of the image however utilizes a more efficient algorithm than that
employed by the quadtree method. There are two processes that are responsible for the
increased eﬂiciency, Pixel Referencing and Low-dimensional Fixed-point approximation.

Fisher describes these processes in detail in his book Fractal Image Compression.

D. RADIANT TIN

The Radiant Tin algorithm is an innovative way of approaching image compression.
Typically, lossy image compression is achieved through 3 steps: transformation,
quantization and coding. Instead of the typical transformation step however, the Radiant
Tin algorithm takes the original image in its pixel space representation and converts it into
a symbol space representation.

This conversion extracts features; such as edges, arcs, and textures, and then
converts them to symbols, in vector space, representing these features. These symbolic
representations consist of start point and end point information, texture information
statistical information defining shape and color standard deviation, relational information

and geometric information defining direction and length. (ISOA, p. 3)
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The conversion process used by the Radiant Tin algorithm is a two step process.
The first step is the determination of edges in the image. These edges are found using a
modified Sobel filter. This Sobel filter kernel has been modified so as to maximize the
ability to extract edge information. The Sobel filter is a type of gradient operator
consisting of four 3x3 masks. These masks are convolved with the image. The resulting
vector gives the magnitude of the gradient as well as its direction. Gradients exceeding a
predetermined threshold are considered edges.

Once the starting point of the edge has been determined, the edge can proceed in
only one of three directions: left, forward or right. Each edge is then traced pixel by
pixel. The start point, the end point, the starting direction (this may be any of 8
directions), the length of the edge in pixels and the directional changes (0 for left, 1 for
forward and a 2 for right) are recorded in tabular format. An example of this table is

shown below:
Start | Edge
Start Point End Point Dir | Length Directional Changes.
212 117 201 2 68('20120202020112102020120120

216{'01120120120120210210210211

113 165 76 36 42('12021021102102020112011111

137 49 252 38 125{'02111111021111102102110202
Table 3.2 Example Edge Data

75| 194 115 22

(S I I (S T e

The second step is concerned with the texture information on either side of the edge.
The average textures on both the right and left sides of the line are determined and are
recorded. These textures are used to provide the gradient information for the edge
determination as well as for image reconstruction.

Once the edges have been determined, Radiant Tin provides two methods as options
used to transform and code the image. The first uses the symbolic image. Only the areas
of the image where symbols exist are transformed using a modified Mallat wavelet
transform. The resulting coefficients are subtracted from the wavelet transform of the
entire original image. This leaves only the texture information of the original image which

is then coded using a different wavelet transform.
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The second method performs transforms in the spatial domain using a residual error
coding approach. The symbolic information from the edge determination is compressed
and then restored. This information is then subtracted from the original image. The
remaining data is then transformed using a modified wavelet transform. This method is

diagrammed in Figure 3.14.

o Entropy Code |
1 (Lossless)

Edge and
Texiure Map

Image Symbolic Image Symbolic
Transtorm Reconstrudion

Muitiplex

Compress

Qualkty
Setting

Figure 3.14 Radiant-Tin Spatial Transformation Flow Diagram (Beser)

Various levels of compression are achieved by modifying the quality setting (Q - a
value of 1 to 100) upon calling the compression routine. The Q-value determines the
amount of texture information (first method) or residual data (second method) that is
coded. The higher the Q-value the larger the compression ratio. Additionally the Q-value
is used to select the amount of segment data that is detected by the edge algorithm.

The Radiant Tin compression algorithm, using either symbolic decomposition or
frequency decomposition, is shown in Figure 3.15.
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Figure 3.15 Radiant Tin Compression Algorithm (ISOA, p. 23)
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IV. IMAGERY

A. COLLECTION SYSTEMS/SENSORS
1. Passive Visible-Near Infrared Sensors

a. Photographic Systems (Framing Cameras)

A framing camera collects imagery just as its name implies; it takes a "snapshot"
of the particular area in view. The camera optics then project this "snapshot" on film,
return beam vidicon or a two-dimensional array of detectors in the camera focal plane
(Elachi, p. 89). Film systems include the Tactical Airborne Reconnaissance Pod System
(TARPS) used on the F-14 and the old Corona reconnaissance satellite system (Wilson, p.
183). Early Landsat satellites use the return beam vidicon which is similar to a television
camera, while digital handheld cameras are the best example of systems using a detector
array (Cracknell and Hayes, p. 29) .

Film framing cameras are particularly advantageous for their large image format,
high information density and cartographic accuracy. A distinct disadvantage to film
systems is in the transmission of the film and the potential for image smearing. The
broad spectral range, digital format of the data and the ability to simultaneously sample
the image are favorable attributes of the electronic framing camera. However, there is the
drawback with the difficulty in getting large arrays or surfaces with sufficient sensitivity
(Elachi, p. 99). A generic photographic system is shown in Figure 4.1.

b. Scanning Systems

Scanning Systems utilize a rotating scanning mirror which places the image
resolution element on a single detector. To cover the entire scene, the mirror scans
perpendicular to the ground track of the platform. Typically, several detectors are used to
allow several "lines" of data to be obtained simultaneously. This system is shown in
Figure 4.1. Examples of scanning systems include the Multispectral Scanner and the

Thematic Mapper both employed on the Landsat satellite system.
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Scanning systems have several advantages. First, they contain simple detectors
coupled with narrow field-of-view optics. They also have wide sweep capability and are
particularly easy to use with multiple wavelengths. They are not without their
disadvantages, the most important of which is moving parts. Additionally, there is a low
detector dwell time which is associated with the difficulty in obtaining good geometric

fidelity in the image. (Elachi, p. 99)

AREAL IMAGE PLANE C“AGING
QPTICS

—| j— SHUTTER SCANNING MIRROR

IMAGING OPTICS

‘“POINT” DETECTOR

3) FRAMING CAMERA b) SCANNING SYSTEMS

..... LINE ARRAY DETECTOR

IMAGING OPTICS

-,
-,
-
.

¢) PUSHBROOM IMAGER

Figure 4.1 Different Imaging Systems (Elachi, p. 98)
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¢. Pushbroom Systems

Pushbroom systems use a linear array of detectors rather than the scanning mirror
employed by scanning systems. As such, the entire cross-track area is covered
simultaneously. Similar to scanning systems, the down-track motion of the platform
results in the imaging of the scene of interest. The apparent "motion" down-track of the
line of detectors is what gives the pushbroom system its name. This system is also
depicted in Figure 4.1. The SPOT camera is an example of a pushbroom system.

What gives the pushbroom system the advantage over a scanning system is that it
permits a much longer dwell time on each surface element which provides greater
sensitivity as well as across track geometric fidelity. The wide field of view of the optics

however, is a disadvantage.

2. Thermal Infrared Sensors

Thermal Infrared Sensors generally use a scanning approach to imaging. The
development in the 1960s of the electro-optical linescanner, allowed for the recording of
thermal energy. Thermal emissions are sensed, passively, by the detectors and converted
to light energy which is recorded on film. An infrared scanning system can be seen in
Figure 4.2.

Presently, thermal detectors are not as sensitive as visible and near-infrared
detectors. In addition, thermal emissions are not as strong as those in the visible and
near-infrared region. This results in thermal sensors with lower resolution and longer
dwell times than the visible and near-infrared sensors. This corresponds to an increase in

thermal noise which is counteracted by cooling the thermal sensors.

3. Active Microwave

a. Synthetic Aperture Radar

A Synthetic Aperture Radar (SAR) overcomes the inability to mount a radar
antenna of sufficient size on a spacecraft. The SAR uses the consecutive positions of the

antenna as it moves along track to recover the reflected signal. The motion along track
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simulates an antenna varying from hundreds of meters to a few kilometers in length

(Cracknell and Hayes, p. 42).
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Figure 4.2 Thermal Imaging System (Cracknell and Hayes, p. 34)

There is an inherent disadvantage to the SAR system in that it requires significant
computing power to correlate the Doppler phase history, which is used to generate the
SAR image. This processing does include some problems in that the algorithm cannot
distinguish between Doppler shifts resulting from the motion of the platform and the
motion of objects sensed (e.g., moving trains, ships, etc.). As such, the Doppler shifts are

additive and may result in object displacement (i.e., a train from its tracks or a ship from

its wake).
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B. COLLECTION PLATFORMS

The discussion here of collection platforms is not meant to be an exhaustive list of
platforms capable of collecting imagery. It is provided to demonstrate the wide variety of
platforms as well as provide the reader with an appreciation for the limitless uses for

imagery products.

1. Satellites

a. Landsat

Landsat is a NASA/DoD integrated system, designed to provide multispectral
land, surface and ocean data. It's original mission was to "demonstrate the feasibility of
multispectral remote sensing from space for practical Earth resources management
practical applications” (Muolo, p. 86). Two of the largest applications of Landsat data are
mapping land cover and monitoring aquatic and terrestrial change. Combinations of the
multispectral imagery with visible and infrared images can be used to detect man-made
objects that have been camouflaged to blend with the background (Muolo, p. 144). The
current system can cover the earth (minus the poles) in 16 days and relay data in near real

time using the Tracking and Data Relay Satellite System (TDRSS). (Muolo, p. 86)

b. SPOT

The Systéme Pour 'Observation de la Terre (SPOT) is a French satellite system
designed by the Centre National d'Etudes Spatiales (CNES - the French Space Agency)
for Earth observation and subsequent distribution of the images it collects. During the
Gulf War, the SPOT satellites were used to provide multispectral imagery that was used
for tactical planning, map updates and terrain analysis since they provide finer resolution
than the Landsat satellites (Muolo, p. 144). The SPOT satellites are in a 97.8° inclination,

500 nm sun-synchronous orbit with a repeat interval of 26 days.

c. DMSP

The Defense Meteorological Satellite Program (DMSP) is a joint-use (military
and civilian) program. The DMSP satellites are designed to generate weather data for the
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U.S. operational forces worldwide. Additionally, through the National Oceanographic and
Atmospheric Administration, the meteorological data is furnished to civilian users. The
satellites provide real time weather information to aid the commander in mission decision
making. The information is "invaluable in supporting the launch, en route, target and
recovery portions of a wide variety of strategic and tactical missions." (Muolo, p. 94)

The satellite is in a Low-Earth orbit of 450 nm. It is in a near-polar, sun-synchronous
orbit allowing for total Earth coverage in approximately 12 hours. The satellite has a

ground track width of 1,600 nm.

2. Reconnaissance Aircraft

Before World War I, reconnaissance was the only role imagined for aircraft during
time of war (Gunston, p. 7). While this quickly was disproved, the reconnaissance mission
is still a high priority. Aircraft are probably the tactical commander's most rapid response
to an imagery requirement. The biggest disadvantage to using reconnaissance aircraft for
collecting imagery is that, with today's weaponry, the aircraft are ordinarily well within the
air defense envelope of the adversary. So while this may make space-based collectors
more attractive, one still must consider the advantage of higher resolution imagery from
these platforms.

Some examples of reconnaissance aircraft include:

¢ SR-71

¢+ U-2/TR-1
OV-1 Mohawk
RF-4 Phantom
TARPS equipped F-14 Tomcat

Unmanned Aerial Vehicles

*

*

*

L 4

3. Others

Other platforms include ships, submarines and land-based tactical units, such as
Navy SEALS, Marine Reconnaissance Units, and Army Special Forces. The sensors
employed by these platforms include digital as well as film-based hand-held cameras.
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Additionally, ships and submarines may be outfitted with specially designed electro-optical
sights from which imagery may be obtained.

C. THE TACTICAL NATURE AND USE OF IMAGERY

Tactical reconnaissance has been defined as "that reconnaissance which provides
information to the tactical commander (ground and air) for his use in the preparation for
and implementation of tactical warfare" (Reamer, p. 4). In the past, this definition
generally applied to a select group of imagery that was archived or obtained by tactical
assets (i.e., aircraft) available to the tactical commander. With the increased emphasis on
the “sensor to shooter" concept, the number of images that will become available to the
tactical commander will only continue to grow and the definition of tactical imagery will
only blur.

Imagery is important in all phases of Battlespace Management ranging from the
initial Intelligence Preparation of the Battlefield, to the assessment of Battle Damage.
Within the Intelligence Preparation of the Battlefield, imagery is used to assist in
battlefield definition, situation assessment and threat analysis. This carries through to the
Targeting phase where the emphasis is in determining the individual targets as well as a
prioritization scheme. Once the targets have been determined, imagery is used during the
Weaponeering phase to determine the best weapon to be used against the target as well as
the selection of the weapon aimpoint. Finally, once the weapon has been placed against
the target, imagery is used during the Battle Damage Assessment (BDA) phase for the
determination of Combat Effectiveness against established Measures of Performance and

Measures of Effectiveness. (Boger and Jones)

D. IMAGES SELECTED FOR THIS ANALYSIS

There were six images chosen for this analysis. They were selected for specific
tactical information as well as their ability to test the strengths and weaknesses of the
algorithms (such as edges in the image). The images were selected from a variety of
TARPS and Hand-Held Digital Camera images held by the Johns Hopkins University
Applied Physics Laboratory. The six images are shown in Appendix A with the specific
points chosen for image comparison annotated on each.

47




48




V. MEASURES

A. QUANTITATIVE MEASURES

There are a variety of quantitative measures that have been used to judge the quality
of reconstructed imagery. They generally fall into four categories: those based on an
image model, those that are derived from signal processing, those based on a Human
Visual System (HVS) model and graphical techniques. These measures are all bivariate
(i.e., based on both the original and reconstructed image) and as such, measure the
statistical difference between the two images. In each of the measures described in the
following sections, F(j,k) is the original pixel value at position (j,k) in the image and
;;‘(j,k) is the pixel value in the reconstructed image. The quantitative measures in
Sub-Sections 1, 2 and 4 are those compiled by Eskicioglu, Fisher and Chen in their paper

"Image Quality Measures and their Performance."

1. Techniques Based on an Image Model

a. Average Difference

(17) AD= %l 3% (F(, k)= F(, )UMN
22

b. Maximum Difference

(18) MD =Max{|F(j,k)-F(,0)|}

¢. Laplacian Mean Square Error

The Laplacian Mean Square Error is used to demonstrate the correlation among
adjacent pixels in the reconstructed image as compared to the original image. The idea
here is that the strong correlation in these¢ adjacent pixels will not be as strong in the

reconstructed image.

M=1 N=1 _ A M=1N=1 .
(19) LMSE= Y X [O{F(,k)}-O{F(,k)}1¥ L X[O{F(,k)}]* where
= k=2 k=2
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(20) O{F(,k)}=F(j+1,k)+F(- LK)+ F(,k+ 1)+ F(,k—1)—4F(,k)
d. Normalized Absolute Error
M N A M N
(21) NAE=X X O{F(j,k)}—O{F(j,k)}I/Z z |0{F(i,k)}|
j=1 k=1 j=1 k=1

where the function O is defined in three ways:

(22) a. O{F(j,k)} = F(.,k)
(23) b. O{F(j,k)} = F(j,k)} and

(24) c. O{F(u,v)} = H{(u*+ vz)% }F(u,v) in the cosine transform domain.
In equation 24, the function H is one that attempts to model the human visual

system and is that function defined by Nill (Equation 29).

0.05r%%% forr< 7
(25) H(r) '—{ e-9[|10810"-‘°g|()9|]z'3 forr=7 }

where r=(u*+v?)"* and u, v are the coordinates in the transform domain.
These definitions for the function O are the same used in the Normalized Mean

Square Error which is defined below.

e. Lp-Norm

06) L.={L% 3 |Fin-Fio|"3, p=1,23
() p—{MNj=lk=l (]v )— (]’) },P—,,

2. Techniques Derived from Signal Processing

a. Structural Content

_ M N o2 M N A
(27) SC=2% ZIFGROI 2 X [FG.©)]

b. Normalized Cross Correlation

28) NK=% % FioFGI S 2 IFG 0P
28) Ni=% £ Ro.0FGRY E 2IFG.0)
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c. Correlation Quality

29) co=% % FG.OFG.E/ S T FG.k
( ) Q~j=lk=l (I’ ) (]’ )j=lk=l (],)

d. Image Fidelity

(M e M 2)
(30) IF=1 (jEIkEI[F(I'k) F(j, k)] /FZ1 ZFG.R)
e. Peak Mean Square Error

1
MN

(31) PMSE=-L 35] k)ifl[F(j, k) - F(, 12/ Max{F(j, k)})2
Paf=

[ Normalized Mean Square Error
M N N M N
(32) NMSE= X X[O{F(,k)}-O{F(,k)}1* X TIO{F(,k)}]?
=1 k=1 =1 k=1
where the O function is defined as in the Normalized Absolute Error measure.

3. Techniques Based on the Human Visual System

Quantitative measures, in general, do not correlate weli with subjective quality
measures. It is suspected the reason for such poor correlation is due to the fact that the
quantitative measures only show the amount of error in the resultant image, not an
evaluation of the type of image degradation. That is to say that the measure "does not
adequately ‘mimic’ what the human visual system does in assessing image quality (Nill, p.
552)." As a result there has been an effort to find a quantitative measure that incorporates
a model of the Human Visual System (HVS). The HVS model Nill defines is the
function shown as equation 24 above and is used for the NAE and NMSE as previously

described.
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4. Graphical Techniques

a. Histogram

Histograms are best used to describe the error in the reconstructed image. There
are several versions of histograms. First is the Difference Histogram. The Difference
Histogram is constructed by first generating a difference image (subtracting the
reconstructed pixel values from the corresponding value in the original image). The
distribution of the pixel values in the difference image are then plotted. Typically, the
distribution resembles a Gaussian distribution with higher fidelity images showing a
spike at x=0.

Other types of Histograms are based on standard statistical measures; Standard
Deviation, Skew and Kurtosis. The Standard Deviation Histogram is "based on the
collected standard deviations from each original pixel histogram (Beser, p. 296)." The
Skew Histogram "is a measure of the departure from symmetry (Beser, p. 296)." Large
positive values show that the majority of pixels in the reconstructed image are above the
average pixel value while large negative values show the opposite. Finally, the Kurtosis
Histogram "is a measure of the peakness of the reconstructed image histogram (Beser, p.
296)." A large value represents a small slope in the reconstructed image histogram; a

small value represents a large slope (i.e., a peak) in the reconstructed image histogram.

b. Hosaka Plot

Hosaka plots are intended to better reflect the human process of making a
subjective evaluation on a particular image. Rather than comparing individual pixel
values between the original and reconstructed image, particular image features are
compared. The process for creating a Hosaka plot is relatively simple. The original
image is segmented into NxN blocks where N is a power of 2. For each of these blocks,
the variance is calculated. If the variance is greater than some predetermined threshold
and the block size is greater than 1, the block is subdivided into 4 equally sized

sub-blocks. The variance is again calculated and the process is repeated until the variance

52




of each block is less than the threshold. Once this process is completed, all blocks of size

k are grouped together to form a class k where k=1,2,4,...,N. (Farrelle, p. 105)
The mean (Equation 37) and the standard deviation (Equation 38) of the nth

block of each class are determined by:

k k
(33) wilm)=7; 2 X u(i,j) for n=12,....n (Farrelle, p. 104)
=l y=

(34) own)= [—‘— f f[u(i,j)- Ki(m))? for n=1,2,...,ny (Farrelle, p. 104)

K =1 =1

Once these have been calculated, the first feature (dm,, Equation 41) is
calculated for both the original and reconstructed images from the average class mean

(Equation 39) and the average of the block means (Equation 40).

(35) k= nl, %_jl Wi(n) where ny is the number of blocks in the kth class. (Farrelle, p.
104)

(36) m= ﬁo_sle_Hl[ﬁ' +[2+fa4+...+Jn] (Farrelle, p. 105)

This is generally not the same as the image mean unless each class has the same number
of pixels.

(37) dmi=x—m (Farrelle, p. 105)

Subtracting m from the average mean "removes the effects of dc drift which has no
adverse effect on the perceived image quality (Farrelle, p. 105).

The other feature is the difference in the average standard deviation for each
class (Equation 43). First the average standard deviation is calculated for the original and
reconstructed image. The same block segmentation from the original image is used on

the reconstructed image for determination of this standard deviation.

(38) Gi=n 'i_fl ox(n) (Farrelle, p. 105)

(39) dS.=|G.—0}| (Farrelle, p. 106)

(40) dM, =|dm,—dm;| (Farrelle, p.106)
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where the * represents the value in the reconstructed image.

The Hosaka plot (an example is shown in Figure 5.1) is then created by plotting
the dS and dM values on a polar plot where the radius is the feature value, dS vectors in
the left half of the plane, dM vectors on the right half of the plane. The vectors are

equally spaced for the different classes.

Figure 5.1 Sample Hosaka Plot (Farrelle, p. 107)

Farrelle uses three examples to demonstrate the utility of Hosaka plots. First, the
addition of a dc shift to the original image to create the reconstructed image. The
addition of this shift does not change the dS nor the dM values. As such the Hosaka plot
would be a point at the origin. This makes intuitive sense in that the addition of 5, for
example, to each pixel value would not change the relative difference between adjacent
pixels and would therefore result in no decrease in subjective quality.

Second, the addition of noise causes the dS, to have equal magnitudes
proportional to the noise power. If the noise has a zero mean then the dM, would be near
zero since the means of class k would be the same and m would be unchanged. This case

is shown in Figure 5.2.
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noise variance = 830 .. i

Figure 5.2 Hosaka Plot with added zero mean noise (Farrelle, p. 107)

The third case involves blurring the original image. In this case, the standard
deviations (dS,) would change for each class since the blurring would effect each class
differently. Additionally, the means (dM,) would also change for each class depending

on the application of the blurriness. Figure 5.3 shows the effect of a single blurring
function applied three times to an image.

0.33 . 0.63< 0.04
e ——t .- - -
7

. : '

s single : double' triple
v ' blur  : blur : blur
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L \\ : '
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Figure 5.3 Hosaka Plot for blurred images (Farrelle, p. 109)
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B. SUBJECTIVE MEASURES

1. Typical Subjective Evaluation

Subjective evaluations of imagery are just as the name implies, subjective. The
evaluation of imagery using subjective measures is not a statistical technique but a

psychological experiment and highly dependent on several factors:

+ the Experience Base of the Observer

+ the Experiment Design

+ the Facilities (i.e., Lighting, Display, Room Environment, etc.)

+ Application Data Set Selection (Selection of Relevant Data) and

+ Compression Technique Parameter Selection (i.e., the “Tuning" of
algorithms for optimum performance)
As such, these factors if not carefully controlled can invalidate the results of the

subjective evaluation. (Beser, p. 294)

A typical subjective measure is computed as follows:

(i sk"k]
(41) R= ’[‘= - (Eskicioglu, Fisher and Chen, p. 55)
£
k=1

where:
n is the number of grades in the scale
n, is the number of observers that selected the particular rating
s, is the score corresponding to the kth rating
Once calculated these values can be compared and a relative ranking of compression

methods can be determined.

2. Subjective Evaluation Shown in this Thesis

This thesis takes a new approach at the subjective evaluation of imagery. It is based

on the Analytic Hierarchy Process created by Thomas L. Saaty and described in detail in
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his book The Analytic Hierarchy Process. A detailed description is contained in
Appendix B and a complete discussion is contained in Saaty's book.

The gist of the Analytic Hierarchy Process is that pairwise comparisons are made
between objects, in this case reconstructed imagery from various compression methods
within one compression ratio. A matrix is constructed with the rating placed in matrix
position (A, B) (A is the first image and B the second). At position (B,A), the reciprocal
of the rating is entered. As the comparison of an image to itself should show equal
quality, a value of 1 is placed along the diagonal. An example matrix is shown in Figure

5.4.

Image A1l A2 A3 A4
A1l 1 3 1/9 5
A2 1/3 1 7 1/3
A3 9 177 1 1
A4 1/5 3 1 1

Figure 5.4 Example AHP Matrix

Once the matrix is completed, a judgment vector is calculated by first
normalizing the matrix along the columns and then averaging the values in each row.
This closely approximates the principle eigenvector (the eigenvector associated with the
largest eigenvalue) of the matrix. In the example matrix, the following judgment vector

would result.

Compression
Method Value
1 0.302
2 0.246
3 0.281
4 0.171

Figure 5.5 Judgment Vector for Matrix in Figure 5.4

In this example the compression methods from best to worst would be: Method 1,
Method 3, Method 2 and Method 4. Since this is a relative ranking, a comparison of the

rankings can be made and an overall ranking can be determined.
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VI. ANALYSIS

This analysis for this thesis was conducted using six different images. They were
selected for specific tactical information as well as their ability to test the strengths and
weaknesses of the algorithms (such as edges in the image). The images were selected
from a variety of TARPS and Hand-Held Digital Camera images held by the Johns
Hopkins University Applied Physics Laboratory. The six images are shown in Appendix
A with the specific points chosen for image comparison annotated on each.

Each of the images was compressed using the following compression algorithms to
four compression ratios (16:1, 32:1, 64:1, 128:1).

* Independent Standards Organization (1ISO) Joint Photographic
Experts Group (JPEG) (Except 128:1 since JPEG cannot compress to

this ratio.)
+ Aware Corporation Wavelet
* Yuval Fisher's Fractal Compression Program

* Navy TENCAP Radiant Tin (TID version 3.0)

A. QUANTITATIVE ANALYSIS

An Analysis of Variance (ANOVA) was conducted on each compression method at
each compression ratio using the MINITAB statistical software. The raw data used for
this analysis is contained in Appendix C. The ANOVA provides a p-value which is the

smallest level of significance at which the hypothesis that the mean value for each
StatiStiC iS the same. (i-e., ujpeg =p,wavelgp =p’fractal =u"’|). FOI' thiS aﬂal}’SiS a 95%

confidence level was used for comparison. Thus, if the p-value for the measure exceeds
0.05, the hypothesis is accepted at the 95% confidence level meaning that there is no
statistical difference among the compression methods using that measure. Otherwise the
hypothesis is rejected and a ranking of the methods may be performed. The ANOVA
p-Value results for 16:1, 32:1, 64:1 and 128:1 compression ratios are shown in Tables

6.1, 6.3, 6.5, and 6.7 respectively. The ranking of measures that have statistically
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respectively.

1. Results at the 16:1 Compression Ratio

different means for the same compression ratios are shown in Tables 6.2, 6.4, 6.6 and 6.8

Quantitative Measure p-value Reject Hypothesis
AD p=0.002 Yes
MD p=0.001 Yes
LMSE p=0.000 Yes
NAE (a) p=0.748 No
NAE (b) p=0.762 No
L, p=0.767 No
L, =0.583 No
L, p=0.357 No
SC p=0.000 Yes
NK p=0.002 Yes
CcQ p=1.000 No
IF p=0.495 No
PMSE p=0.484 No
NMSE (a) p=0.495 No
NMSE (b) p=1.000 No
NMSE (c) p=1.000 No
Table 6.1 ANOVA p-Values at 16:1 Compression Ratio
Ranking AD LMSE MD
#1 Wavelet Radiant Tin Wavelet
#2 JPEG Fractal Radiant Tin
#3 Radiant Tin JPEG JPEG
#4 Fractal Wavelet Fractal
Ranking SC NK
#1 Wavelet Wavelet
#2 JPEG JPEG
#3 Radiant Tin Radiant Tin
#4 Fractal Fractal

Table 6.2 Ranking of Measures that have Statistically Different Means
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2. Results at the 32:1 Compression Ratio

Quantitative Measure p-value Reject Hypothesis
AD p=0.069 No
MD p=0.033 Yes
LMSE p=0.000 Yes
NAE (a) p=0.403 No
NAE (b) p=0.432 No
L, p=0.414 No
L, p=0.243 No
L, p=0.143 No
SC p=0.000 Yes
NK p=0.002 Yes
cQ p=1.000 No
IF p=0.121 No
PMSE p=0.117 No
NMSE (a) p=0.121 No
NMSE (b) p=1.000 No
NMSE (c) p=1.000 No
Table 6.3 ANOVA p-Values at 32:1 Compression Ratio
Ranking MD LMSE SC NK
#1 Wavelet Fractal JPEG Wavelet
#2 Radiant Tin Radiant Tin Wavelet JPEG
#3 JPEG JPEG Radiant Tin Radiant Tin
#4 Fractal Wavelet Fractal Fractal

Table 6.4 Ranking of Measures that have Statistically Different Means
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3. Results at the 64:1 Compression Ratio

Quantitative Measure p-value Reject Hypothesis
AD p=0.073 No
MD p=0.061 No
LMSE p=0.000 Yes
NAE (a) p=0.065 No
NAE (b) p=0.067 No
L, p=0.048 Yes
L, p=0.053 No
L, p=0.055 No
SC p=0.005 Yes
NK p=0.012 Yes
cQ p=0.999 No
IF p=0.029 Yes
PMSE p=0.023 Yes
NMSE (a) p=0.029 Yes
NMSE (b) p=0.999 No
NMSE (c) p=1.000 No
Table 6.5 ANOVA p-Values at 64:1 Compression Ratio
Ranking SC LMSE L1 NK
#1 Wavelet Fractal Wavelet Wavelet
#2 Radiant Tin Radiant Tin Radiant Tin Radiant Tin
#3 JPEG JPEG Fractal JPEG
#4 Fractal Wavelet JPEG Fractal
Ranking IF PMSE NMSE(a)
#1 Wavelet Radiant Tin Wavelet
#2 Fractal Wavelet Radiant Tin
#3 JPEG JPEG JPEG
#4 Radiant Tin Fractal Fractal

Table 6.6 Ranking of Measures that have Statistically Different Means

62




4. Results at the 128:1 Compression Ratio

Quantitative Measure p-value Reject Hypothesis
AD p=0.627 No
MD p=0.560 No
LMSE p=0.000 Yes
NAE (a) p=0.173 No
NAE (b) p=0.235 No
L, p=0.144 Yes
L, p=0.090 No
L, p=0.083 No
SC p=0.002 Yes
NK p=0.008 Yes
cQ p=0.984 No
IF p=0.048 Yes
PMSE =0.036 Yes
NMSE (a) p=0.048 Yes
NMSE (b) p=0.985 No
NMSE (c) p=0.996 No
Table 6.7 ANOVA p-Values at 128:1 Compression Ratio
Ranking SC LMSE L1 NK
#1 Wavelet Fractal Wavelet Wavelet
#2 Radiant Tin Radiant Tin Radiant Tin Radiant Tin
#3 Fractal Wavelet Fractal Fractal
Ranking IF PMSE NMSE(a)
#1 Wavelet Wavelet Wavelet
#2 Radiant Tin Radiant Tin Radiant Tin
#3 Fractal Fractal Fractal

Table 6.8 Ranking of Measures that have Statistically Different Means

63




B. QUALITATIVE ANALYSIS

There were 11 observers chosen from the Space Systems Operations Program
students and staff at the Naval Postgraduate School and from the Radiant Tin project
team at the Johns Hopkins University Applied Physics Laboratory. The images were
viewed in pairs following the script outlined in Appendix D. Each image was printed on
a transparency using a Kodak ColorEase printer and was viewed on a light table in an
isolated environment. While the observer was not limited to the time taken for each
comparison, the goal was to limit each experiment to no longer than 1.5 hours. This goal
was met.

In order to provide some randomness to the decision process, the order of the
pairings was changed among the different observers. Additionally, the highest ratios of
compression were shown first so as to minimize the effects of a learning curve. Finally,
the results were analyzed using the Analytic Hierarchy Process described in Appendix B.
The individual observer results are shown in Tables 6.9, 6.11, 6.13 and 6.15. The

Rankings at each compression ratio are shown in Tables 6.10, 6.12, 6.14 and 6.16.

1. Results at 16:1 Compression Ratio

JPEG Wavelet Fractal Radiant Tin
Observer 1 0.29369 0.35122 0.13889 0.2162
Observer 2 0.30817 0.37544 0.1544 0.16199
Observer 3 0.29075 0.38221 0.1218 0.20524
Observer 4 0.28698 0.26962 0.23767 0.20573
Observer 5 0.29583 0.28194 0.20694 0.21528
Observer 6 0.2697 0.2697 0.23636 0.22424
Observer 7 0.34484 0.31098 0.15013 0.19405
Observer 8 0.33793 0.36513 0.10969 0.18725
Observer 9 0.26875 0.26875 0.23542 0.22708
Observer 10 0.29281 0.29107 0.19871 0.21741
Observer 11 0.29004 0.30604 0.21248 0.19144
Average 0.29813 0.31565 0.18205 0.20417

Table 6.9 Individual Observer Results at 16:1 Compression Ratio
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Ranking Method
#1 Wavelet
#2 JPEG
#3 Radiant Tin
#4 Fractal

Table 6.10 Ranking at 16:1 Compression Ratio

2. Results at 32:1 Compression Ratio

JPEG Wavelet Fractal Radiant Tin
Observer 1 0.21605 0.4574 0.07127 0.25528
Observer 2 0.30598 0.42541 0.07861 0.19001
Observer 3 0.32295 0.37594 0.04456 0.25655
Observer 4 0.29033 0.37328 0.11499 0.2214
Observer 5 0.33369 0.30336 0.0884 0.27455
Observer 6 0.25481 0.33933 0.09793 0.30793
Observer 7 0.26166 0.39473 0.07569 0.26792
Observer 8 0.21095 0.45084 0.05258 0.28563
Observer 9 0.2437 0.30468 0.20889 0.24272
Observer 10 0.27418 0.32857 0.14263 0.25463
Observer 11 0.2328 0.36774 0.10004 0.29942
Average 0.26792 0.37466 0.09778 0.25964
Table 6.11 Individual Observer Results at 32:1 Compression Ratio
Ranking Method

#1 Wavelet

#2 JPEG

#3 Radiant Tin

#4 Fractal

Table 6.12 Ranking at 32:1 Compression Ratio
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3. Results at 64:1 Compression Ratio

JPEG Wavelet Fractal Radiant Tin
Observer 1 0.085 0.44999 0.07406 0.39094
Observer 2 0.11717 0.45969 0.05942 0.36372
Observer 3 0.13401 0.44136 0.04862 0.37601
Observer 4 0.0958 0.48564 0.07321 0.34535
Observer 5 0.1228 0.52255 0.0761 0.27854
Observer 6 0.13799 0.43342 0.05954 0.36905
Observer 7 0.09609 0.49415 0.07317 0.33659
Observer 8 0.1147 0.45603 0.05435 0.37492
Observer 9 0.11894 0.43063 0.06813 0.3823
Observer 10 0.12638 0.4194 0.08314 0.37109
Observer 11 0.08842 0.46627 0.06297 0.38234
Average 0.11248 0.45992 0.06661 0.36099
Table 6.13 Individual Observer Results at 64:1 Compression Ratio
Ranking Method

#1 Wavelet

#2 Radiant Tin

#3 JPEG

#4 Fractal

Table 6.14 Ranking at 64:1 Compression Ratio
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4. Results at 128:1 Compression Ratio

Wavelet Fractal Radiant Tin
Observer 1 0.55541 0.0606 0.38399
Observer 2 0.60066 0.06861 0.33073
Observer 3 0.52765 0.07529 0.39706
Observer 4 0.49222 0.09061 041717
Observer 5 0.42887 0.08716 0.48398
Observer 6 0.51364 0.08731 0.39905
Observer 7 0.4911 0.09457 0.41433
Observer 8 0.51845 0.07347 0.40808
Observer 9 0.49612 0.12031 0.38357
Observer 10 0.41296 0.11349 0.47355
Observer 11 0.50823 0.08117 0.41061
Average 0.50412 0.0866 0.40928
Table 6.15 Individual Observer Results at 128:1 Compression Ratio
Ranking Method
#1 Wavelet
#2 Radiant Tin
#3 Fractal

Table 6.16 Ranking at 128:1 Compression Ratio

5. Summary of Qualitative Experiment Results

A summary of the results of the qualitative experiment is shown graphically in

Figure 6.1.
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Figure 6.1 Summary of Qualitative Experiment Results
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VII. CONCLUSIONS AND RECOMMENDATIONS

A. QUANTITATIVE VS. QUALITATIVE MEASURES

The quantitative analysis in Chapter VI shows that several measures are not useful
for rating compression methods in that the values of the measures show no statistical
difference. This is consistent with previous work specifically mentioned in Eskicioglu,
Fisher, and Chen. They have stated that quantitative measures, in general, can "reliably
be used to specify the magnitude of degradation in reconstructed images for a given
compression technique." For those measures, however, which show statistical
differences, the rankings roughly correspond to those obtained in the qualitative
evaluation. As this thesis was a limited evaluation, this result in itself may be purely
coincidence as "a single scalar value cannot be used to describe a variety of impairments
(Eskicioglu, Fisher and Chen)." Since each compression method results in a different
type of "impairment,” it is not wise to base a judgment of compression methods on
quantitative measures, particularly in the tactical environment where interpretability is
typically independent of the quantitative error in the image.

The limited test set and number of observers used in the qualitative assessment
provide a basis for ranking the compression methods. As shown previously in Figure 6.1,
Wavelet compression appears to be the best choice of compression method across the
various compression ratios. JPEG does very well at low ratios of compression as
expected. Similarly, the Radiant Tin algorithm does very well at high ratios of
compression. In the application of tactical imagery, fractal compression does not seem to
be a good choice. One of the frequent comments that observers had after the experiment
was that some of the images (which the experimenter determined to be those compressed
using fractals) seemed to introduce features into the image which could possibly confuse
the person interpreting the image. The most obvious was the introduction of additional
aircraft in certain images. As fractal compression uses "pieces” of the original image for

compression and subsequent reconstruction, it is probably not useful for this application.
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B. RECOMMENDATIONS FOR FOLLOW-ON WORK

As stated above, this analysis was conducted on a limited test set with a limited
number of observers. This test set consisted solely of visual imagery of similar content.
Follow-on work would need to include imagery from other sensors (e.g., SAR and
Thermal IR ). One method of accomplishing this would be to gather imagery used in a
tactical exercise and conduct the experiment on that imagery, as it should be an accurate
reflection of the imagery required by a tactical commander.

Second, follow-on evaluations should include users from the field. As the
requirement is to get imagery to disadvantaged users, they should be included in
follow-on evaluations.

Finally, the platform used to compress/decompress imagery as well as the time to
compress/decompress should be analyzed. The platform is important as units such as
SEAL teams and Marine reconnaissance units that require imagery have limited resources
(i.e., laptop Personal Computers at best) with which to work in the field. This is
integrally related to the time for compression/decompression. As these units are
particularly vulnerable, algorithms that compress/decompress faster than others and

which provide reconstructed images of similar quality are clearly better.
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APPENDIX A. TEST IMAGERY

Figure A.1 Image 1 - npgfordll
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4 Helicopters on Airstrip
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Figure A.2 Image 2 - npglang3i

6 White Aircraft

Buildings (edges)

Differentiate between Aircraft Type
Gray vs. White Aircraft

Count Cars

nwhwN -
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Figure A.3 Image 3 - npglangg8i

1. Helicopters in Lower Left

2. Helicopter on Pad - Upper right

3. Aircraft in Lower Right (White on White)
4. APU Next to Aircraft

5. Training Aircraft

6. Differentiate between Aircraft Type
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Figure A.4 Image 4 - npgLAX
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Figure A.5 Image S - npgpalm

Aircraft Middle of Image

White Plane - Upper Left
Building with Half-Plane (edges)
Tank

Vehicles around Aircraft

Count Cars

Maintenance Buildings

75




G A S

Figure A.6 Image 6 - npgslangn!0
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APPENDIX B. THE ANALYTIC HIERARCHY PROCESS

The Analytic Hierarchy Process (AHP) was developed by Thomas L. Saaty to solve
complex problems involving multiple criteria. It is designed specifically to deal with
subjective evaluations of the relative importance of each of the criteria as well as the
individual alternatives within each criterion. AHP provides a prioritized evaluation of
problem. This evaluation not only shows which set of criteria provides the optimal
solution but gives a relative weighting of the different sets. An example from Saaty is the
easiest manner in which to describe the process. His example that begins in Section 1-6
of The Analytic Hierarchy Process will be followed.

First, it is essential that the problem be developed in a graphic representation
showing the overall goal, the criteria and the decision alternatives. In the school selection
problem, the overall goal is deciding on a school that provides the greatest satisfaction to
the student making the decision. Six criteria were chosen as being the most important
aspects of that choice: Learning, Friends, School Life, Vocational Training, College
Preparation and Music Classes. The decision alternatives are schools A, B and C. This

hierarchy is shown in Figure B.1.

Figure B.1 School Satisfaction Hierarchy
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Integral to the AHP is the determination of a matrix containing the results of
pairwise comparison between the various alternatives within each criterion as well as the
determination of a matrix similarly containing these results between the various criteria.

However, before pairwise comparisons can be made, it is essential that a subjective
weighting scale be developed. Saaty supports a 9 level scale being the upper limit on
size. These are based on 5 subjective attributes: equal, weak, strong, very strong, and
absolute. This provides 5 levels with the additional 4 being the points in-between each
attribute when greater precision is required. Various conversions of this scale are

provided in Saaty's book.

The following ratings were used for the school example:

1 -- A and B are equally important

3 -- A is weakly more important than B

5 -- A is strongly more important than B

7 -- A is demonstrably more important than B

9 -- A is absolutely more important than B
Reciprocals of those ratings are used for the converse evaluation.

First pairwise comparisons are made between the various criteria. The results from
the school selection example are in Table B.1.

The priority vector of this matrix is then determined. The priority vector is the
normalized principle eigenvector (the eigenvector associated with the largest eigenvalue)
of the matrix. Saaty describes two techniques which are good approximations of the
priority vector. The one chosen for the development of this example is:

(1) Each column of the matrix is normalized

(2) Each row of the normalized matrix is averaged giving the priority vector.

For this example the normalized matrix is shown in Table B.2 and the priority

vector of this matrix is shown in Table B.3.
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School Vocational |College Music

Learning |Friends Life Training  |Preparation |Classes
Learning 1 4 3 1 3 4
Friends 1/4 1 7 3 1/5 1
School Life 173 1/7 1 175 1/5 1/6
Vocational 1 173 5 1 | 1/3
Training
College 173 5 5 1 1 3
Preparation
Music 1/4 1 6 3 173 1
classes

Table B.1 Pairwise Comparisons between Criteria
School Vocational |College Music

Learning |Friends Life Training  |Preparation |Classes
Learning 0.32 0.35 0.11 0.11 0.52 0.42
Friends 0.08 0.09 0.26 0.33 0.04 0.11
School Life 0.11 0.01 0.04 0.02 0.04 0.02
Vocational 0.32 0.03 0.19 0.11 0.17 0.04
Training
College 0.11 0.44 0.19 0.11 0.17 0.32
Preparation
Music 0.08 0.09 0.22 0.33 0.06 0.11
classes

Table B.2 Normalized Pairwise Comparisons between Criteria
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If the decision were to choose which criterion was most important, in this example,
Learning is most important followed in order by College Preparation, Friends/Music

Classes, Vocational Training and School Life.

Value
Learning 0.31
Friends 0.15
School Life 0.4
Vocational 0.14
Training
College 0.22
Preparation
Music 0.15
classes

Table B.3 Priority Vector of the Criteria Matrix

decision is to choose among three schools.

compared against the others with respect to the individual criteria. Figure B.2 shows

these matrices.

As such each of the schools must be

This example continues in that the

Learning Friends School Life

A B C A B C A B C
A 1 13 1R A 1 1 1 A 1 5 1
B 3 1 3 B 1 1 1 B |15 1 15
C 2 113 1 C 1 1 1 C 1 5 1

Vocational College Music

Training Preparation Classes

A B C A B Cc A B C
A 1 9 7 A 112 1 A 1 6 4
B|19 1 15 B 2 1 2 B |16 1 173
cC |7 5 1 C 112 1 cC |14 3 1

Figure B.2 Pairwise Comparisons between Alternatives within each Criterion
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The vectors of priority for each of the matrices contained in Figure B.2 are shown

below.
School School  Vocational College Music
Learning  Friends Life Training Preparation Classes
A 0.16 0.33 0.45 0.75 0.25 0.69
B 0.59 0.33 0.09 0.06 0.5 0.09
C 0.25 0.33 0.46 0.19 0.25 0.22

Table B.4 Eigenvectors for each Criterion

Finally the priority vector in Table B.3 is multiplied by the matrix of priority

vectors from Table B.4. The result being a vector of the overall ranking of each

alternative with respect to the criteria. For this example:
School A =0.38
School B = 0.37
School C =0.25

One inherent problem in the AHP is that of consistency. Mathematically, if A is

twice B and B is twice C then A is six times C. Unfortunately this does not hold up in

subjective evaluations. It is very likely that while A is weakly better than B (value of 3)

and B is strongly better than C (value of 5) that the person making the evaluations may

find A to be absolutely better than C (value of 9). While 3 times 5 is clearly not 9, this

does not invalidate the AHP procedure.
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APPENDIX C. QUANTITATIVE MEASURES RAW DATA

Each of the following tables (Table C.1 through C.15) contain the quantitative
measures for each image under each compression method and compression ratio. In the
tables, the image is referred to by the following letter code:

A - npgfordl11

B - npglang3i

C - npglang8i

D - npgLAX

E - npgpalm

F - npgslangn10

The letters a, b and c refer to the options discussed in Chapter V.

Image A B C D E F

AD 0.04611 -0.06959] 0.00249 -0.019( -0.04509| 0.00218
MD 62 115 80 56 77 25
LMSE 0 0 0 0 0 0
NAE (a) 0.02351] 0.03987} 0.03979| 0.05273] 0.05291| 0.01636
NAE (b) 0.00886{ 0.01644] 0.01719] 0.01835| 0.01911] 0.00564
NAE (c) 1 1 1 1 1 1
L1 2.66938] 6.31068] 523492 6.75567| 7.56444| 2.62771
L2 4.08956] 9.26046]  7.54321] 8.69939| 9.79656| 3.39337
L3 5.68598| 12.4558| 10.0802| 10.4365| 11.8423( 4.04675
SC 1.00134] 1.00039| 1.00103| 1.00137 1.00126{ 1.00014
NK 0.99882| 0.99832] 0.99822( 0.99713] 0.99715] 0.99972
CQ 144916 182.409| 170.656| 134.649| 150.782(  169.062
IF 0.99898| 0.99703] 0.99747} 0.99563| 0.99556] 0.99958
PMSE 0.00026/ 0.00132| 0.00088| 0.00129{ 0.00152} 0.00018
NMSE (a) 0.00102[ 0.00297{ 0.00253] 0.00437| 0.00444] 0.00042
NMSE (b) 671.693| 947.947] 845.448| 633.331] 740.807f 865.099
NMSE (c) 245.238] 220.476] 210.655] 195.886] 201.485] 368.042

Table C.1 JPEG Compression, 16:1 Compression Ratio
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Image A B C D E F

AD 0.06002| -0.00551} 0.01812f 0.01466| -0.00457] 0.00543
MD 31 56 52 48 58 19
LMSE 0.25803| 0.42361| 0.33849| 0.74566] 0.76274|  0.49426
NAE (a) 0.01935 0.0348] 0.03566| 0.05014| 0.04959! 0.01461
NAE (b) 0.00744] 0.01409| 0.01534| 0.01745| 0.01784  0.00505
NAE (c) 1 1 1 1 1 1
L1 2.19665| 5.50731| 4.69127] 6.42412} 7.09013] 2.34594
L2 3.15802 7.54196] 6.35829 8.1801f 9.04165] 3.01701
L3 4.0875| 9.47856| 7.98052| 9.69155 10.737 3.5715
SC 1.00182} 1.00016] 1.00044| 1.00129] 1.00102{ 1.00018
NK 0.99879] 0.99894 0.99888] 0.99742 0.9976; 0.99974
CQ 144911 182.521 170.769]  134.689 150.85] 169.066
IF 0.99939]  0.99803 0.9982| 0.99613] 0.99622|  0.99966
PMSE 0.00015{  0.00087| 0.00062| 0.00114 0.0013] 0.00014
NMSE (a) 0.00061;  0.00197 0.0018] 0.00387; 0.00378,  0.00034
NMSE (b) 671.354| 948.176| 845.962| 633.391] 741.001]  865.062
NMSE (c) 245.13|  220.536| 210.784|  195.909 201.54} 368.028

Table C.2 Wavelet Compression, 16:1 Compression Ratio
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Image A B C D E F

AD 0.08787|  0.17295| 0.15951 0.16335] 0.13594{  0.14561
MD 91 141 129 99 126 58
LMSE 0 0 0 0 0 0
NAE (a) 0.03349]  0.0427| 004359 0.06364] 006117  0.0185
NAE (b) 0.01303{ 0.01669] 0.01809| 0.02206] 002178 0.00641
NAE (c) 1 1 1 1 1 1
L1 3.8014| 6.75793|  5.7347| 8.15326|  8.7461] 2.97084
L2 579745 10.0388| 8.60723| 10.8137] 11.4776] 3.86683
L3 8.1519| 13.9868| 12.1614] 13.4605| 14.2288| 4.68186
SC 1.00555| 1.00731] 1.00755| 1.01222] 1.00987 1.00265
NK 0.99622| 0.99463] 099461 099058 0.99207] 0.99841
cQ 144.539| 181.734] 170.038] 133.765| 150.014]  168.84
IF 0.99796| 0.99652| 0.99671] 0.99324] 0.99391]  0.99945
PMSE 0.00052| 0.00155| 0.00114 0002 0.00209 0.00023
NMSE (a) 0.00204| 0.00348| 0.00329| 0.00676] 0.00609|  0.00055
NMSE (b) 668.742|  941.167| 839.738|  626.166] 734.179|  862.855
NMSE (c) 244211 21897 209291  193.79| 199.776|  367.129

Table C.3 Fractal Compression, 16:1 Compression Ratio
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Image A B C D E F

AD 0.28945|  0.03293| -0.01288 0.00442 0.00501; 0.08037
MD 36 71 57 58 58 19
LMSE 0 0 0 0 0 0
NAE (a) 0.0255{ 0.03878| 0.03938 0.0557| 0.05386{ 0.01637
NAE (b) 0.00972] 0.01559| 0.01676] 0.01934] 0.01934| 0.00565
NAE (c) 1 1 1 1 1 1
L1 2.89448 6.13693| 5.18095{ 7.13633| 7.70094| 2.62851
L2 4.13774] 8.44207| 7.01444] 9.17395| 9.85196{  3.35242
L3 5.30163] 10.6419] 8.76694| 10.9786] 11.7321f  3.94702
SC 1.00666|  1.00276 1.0025| 1.00374] 1.00447} 1.00124
NK 0.99617| 0.99739] 0.99766 0.9957| 0.99553] 0.99917
CQ 144.531 182.239 170.56| 134.457| 150.537 168.97
IF 0.99896| 0.99754| 0.99781| 0.99514 0.99551]  0.99959
PMSE 0.00026 0.0011| 0.00076] 0.00144| 0.00154| 0.00017
NMSE (a) 0.00104] 0.00246| 0.00219| 0.00486| 0.00449| 0.00041
NMSE (b) 667.998] 945.612| 844.132| 631.747 738.31| 864.118
NMSE (c) 243.951] 219.957| 210344 195423 200.837] 367.646

Table C.4 Radiant Tin Compression, 16:1 Compression Ratio
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Image A B C D E F

AD 0.09099 0.0878| -0.01804| -0.15903| -0.03557| -0.14196
MD 88 141 137 88 102 34
LMSE 0 0 0 .0 0 0
NAE (a) 0.04236] 0.05192| 0.05473| 0.07018| 0.06531 0.0212
NAE (b) 0.01625| 0.02122] 0.02341| 0.02434| 0.02367| 0.00725
NAE (c) 1 1 1 1 1 1
L1 4.80904| 8.21721| 7.20003] 8.99141| 9.33874| 3.40359
L2 7.14548 12.0362 10.485 11.8059 12.2436] 4.43952
L3 9.70208 16.2355 14.0771 14.4376] 149768} 5.37698
SC 1.00366 1.00286f 1.00124|  0.99982 1.0022f 0.99868
NK 0.99663| 0.99607| 0.99694] 0.99606| 0.99544 1.0003
CQ 144.597 181.997 170.437 134.505 150.523 169.16
IF 0.9969 0.99499] 0.99511| 0.99194| 0.99307| 0.99927
PMSE 0.00079|  0.00223| 0.00169] 0.00238]  0.00238 0.0003
NMSE (a) 0.0031} 0.00501] 0.00489| 0.00806] 0.00693| 0.00073
NMSE (b) 670.079| 945.554| 845286 634.371| 740.103] 866.411
NMSE (c) 244.67| 219.925| 210.596 196.191}  201.299| 368.583

Table C.5 JPEG Compression, 32:1 Compression Ratio
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Image A B C D E F

AD 0.11808 0.03843| 0.02785] -0.00835| 0.01328| 0.00061
MD 57 118 103 67 89 28
LMSE 0.52731] 0.63994| 0.58203| 0.86276| 0.87513] 0.54404
NAE (a) 0.02935| 0.04402| 0.04743| 0.05992| 0.05816| 0.01816
NAE (b) 0.01103] 0.01796 0.0202 0.0208] 0.02105| 0.00625
NAE (c) 1 1 1 1 1 1
L1 3.33195] 6.96678|  6.23948 7.6764| 8.31547, 2.91537
L2 5.15628/ 10.0125| 8.96184| 10.0098| 10.8315| 3.77203
L3 7.07488]  13.1805 11.8193] 12.1547] 13.1645 4518
SC 1.00388; 1.00161 1.00092] 1.00292| 1.00292{ 1.00027
NK 0.99726] 0.99746| 0.99775] 0.99565| 0.99583] 0.99961
CQ 144.69]  182.252| 170.576] 134.449] 150.583] 169.043
IF 0.99839] 0.99653] 0.99643| 0.99421] 0.99457] 0.99948
PMSE 0.00041| 0.00154] 0.00124] 0.00171}f 0.00186{ 0.00022
NMSE (a) 0.00161| 0.00347| 0.00357] 0.00579f 0.00543] 0.00052
NMSE (b) 669.92| 946.761| 845.562] 632.301] 739.535| 864.988
NMSE (c) 244.615 220.21|  210.682] 195.579f 201.148; 367.995

Table C.6 Wavelet Compression, 32:1 Compression Ratio
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Image A B C D E F

AD 0.04306| 0.10269| 0.14653| 0.10135| 0.01874] 0.12661
MD 141 190 192 123 126 62
LMSE 0 0 0 0 0 0
NAE (a) 0.05497| 0.05992] 0.06145| 0.08723] 0.07862|  0.02255
NAE (b) 0.02139( 0.02308] 0.02489| 0.03009] 0.02818| 0.00769
NAE (c) 1 1 1 1 1 1
L1 6.24039| 9.48354] 8.08384| 11.1752| 11.2412] 3.62155
L2 9.57968|  14.4027|  13.0951 15.1255] 14.9955| 4.81904
L3 13.0444) 203199} 19.5638  19.0001 18.7409|  5.99765
SC 1.00981 1.01057{ 1.01131 1.019 1.0131 1.00276
NK 0.99236f 0.99118 0.9906( 0.98407f 0.98833 0.9982
CQ 143,978 181.105{ 169.352{ 132.885| 149.449( 168.804
IF 0.99443| 0.99283| 0.99238] 0.98678 0.9896( 0.99914
PMSE 0.00141| 0.00319] 0.00264| 0.00391| 0.00357| 0.00036
NMSE (a) 0.005577 0.00717} 0.00762] 0.01322 0.0104] 0.00086
NMSE (b) 665.784| 938.005] 836.507| 621.767| 731.711| 862.748
NMSE (c) 243.179| 218.258| 208.505| 192.498] 199.136] 367.086

Table C.7 Fractal Compression, 32:1 Compression Ratio
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Image A B C D E F

AD 0.17322|  0.02137| -0.00087| 0.02189 -0.01898| 0.08056
MD 70 108 92 80 87 28
LMSE 0 0 0 0 0 0
NAE (a) 0.03775| 0.04728| 0.05051| 0.06612| 0.06229] 0.01958
NAE (b) 0.01408/  0.01907| 0.02116 0.0229| 0.02249| 0.00672
NAE (c) 1 1 1 1 1 1
L1 4.28554| 7.48226| 6.64461] 8.47063| 8.90696| 3.14364
L2 6.51999| 10.7464| 9.45786| 11.1598| 11.6274] 4.05133
L3 8.79462| 14.1232| 12.4008] 13.6678| 14.1342|  4.83097
SC 1.00726| 1.00328| 1.00392| 1.00532| 1.00552| 1.00147
NK 0.99511| 0.99637| 0.99606| 0.99376| 0.99413|  0.99897
CQ 144.377| 182.053| 170.286| 134.194] 150.325| 168.934
IF 0.99742| 0.99601|  0.99602 0.9928; 0.99375 0.9994
PMSE 0.00065 0.00178] 0.00138] 0.00213| 0.00215} 0.00025
NMSE (a) 0.00258| 0.00399]  0.00398 0.0072f 0.00625 0.0006
NMSE (b) 667.563] 945.116] 842.899| 630.716] 737.509| 863.911
NMSE (c) 243.79| 219.839] 210.044] 195.111f 200.624| 367.564

Table C.8 Radiant Tin Compression, 32:1 Compression Ratio
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Image A B C D E F

AD 0.64086| 0.76596| 0.33604 0.4462| 0.55421| -0.50066
MD 168 192 194 156 160 68
LMSE 0 0 0 0 0 0
NAE (a) 0.10324 0.0792 0.0945] 0.10404] 0.09753 0.03399
NAE (b) 0.04121 0.0316; 0.04011} 0.03612] 0.03527 0.01151
NAE (c) 1 1 1 1 1 1
L1 11.7197 12.5346| 12.4317 13.3295 13.9451 5.45755
L2 153174 17.6699 16.9435 17.5307 18.1106 7.15103
L3 19.1191]  23.5002 22.102) 21.5188 22.165 8.78248
SC 1.00431 1.0146]  1.00705 1.00816 1.0122 0.99466
NK 0.99073} 0.98741] 0.99012] 0.98707| 0.98639 1.00174
CQ 143.742 180.415 169.27 133.291 149.155 169.404
IF 0.98575 0.9892] 0.98724{ 0.98224| 0.98483 0.99812
PMSE 0.00361 0.0048| 0.00441] 0.00525{ 0.00521 0.00079
NMSE (a) 0.01425 0.0108 0.01276] 0.01776 0.01517 0.00188
NMSE (b) 669.864| 934.297) 840.331] 629.027| 732.589 870.028
NMSE (c) 244.501)  217.385] 209.382 194.561 199.305 370.079

Table C.9 JPEG Compression, 64:1 Compression Ratio
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Image A B C D E F

AD 0.21351 0.0459] 0.04718  0.02282 -0.0259 0.014
MD 92 152 136 100 110 40
LMSE 0.71196| 0.83905| 0.83705; 0.91498| 0.91671] 0.58169
NAE (a) 0.04097| 0.05281] 0.05906| 0.07221f 0.06719| 0.02121
NAE (b) 0.01527| 0.02156| 0.02497| 0.02505| 0.02444| 0.00725
NAE (c) 1 1 1 1 1 1
L1 4.65082| 8.35885| 7.76924| 9.25168| 9.60627|  3.40642
L2 7.51532 12.5003 11.733 12.2598 12.7138| 4.47254
L3 10.6732 17.0671 16.1479 15.0745 15.6835]  5.44351
SC 1.00744 1.00335 1.00315 1.00368 1.00359 1.00056
NK 0.9946| 0.99563| 0.99537| 0.99382 0.99447|  0.99935
CcQ 144.303 181.917 170.169 134.203 150.377 169
IF 0.99657 0.9946| 0.99388] 0.99131] 0.99252| 0.99926
PMSE 0.00087 0.0024| 0.00212| 0.00257| 0.00257{ 0.00031
NMSE (a) 0.00343 0.0054] 0.00612] 0.00869] 0.00748( 0.00074
NMSE (b) 667.45| 945.071| 843.623| 631.829] 739.027| 864.729
NMSE (c¢) 243.749{ 219.824| 210.195 19543 201.012| 367.888

Table C.10 Wavelet Compression, 64:1 Compression Ratio
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Image A B C D E F

AD 0.04128/ 0.11652| 0.09075| -0.01366| 0.06785] 0.11802
MD 159 205 195 123 143 93
LMSE 0 0 0 0 0 0
NAE (a) 0.07787| 0.07282| 0.07508| 0.11094| 0.09541| 0.02932
NAE (b) 0.0291 0.0278 0.0296{ 0.03817| 0.03436] 0.00979
NAE (c) 1 1 1 1 1 1
L1 8.84] 11.5258] 9.87669| 14.2129| 13.6414] 4.70792
L2 13.917| 17.6979| 16.2522| 19.3531 18.4443 6.5881
L3 19.1827] 24.9585] 24.2163| 24.2218 23.292| 8.58005
SC 1.01755| 1.01443| 1.01469| 1.02532| 1.01918| 1.00353
NK 0.9855| 0.98747| 0.98689| 0.97683] 0.98272] 0.99744
CQ 142.983| 180.426| 168.718;  131.908 148.6| 168.677
IF 0.98824] 0.98917| 0.98826] 0.97835] 0.98427 0.9984
PMSE 0.00298[ 0.00482}  0.00406 0.0064 0.0054|  0.00067
NMSE (a) 0.01176| 0.01083] 0.01174| 0.02165| 0.01573 0.0016
NMSE (b) 660.471 934.3| 833.602| 617.729] 727.159| 862.052
NMSE (c) 241.321] 217.423| 207.804] 191311 197.943 366.8

Table C.11 Fractal Compression, 64:1 Compression Ratio
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Image A B C D E F

AD 0.25094| -0.01528| -0.03742| 0.03882 -0.00492| 0.02719
MD 106 146 138 103 96 50
LMSE 0 0 0 0 0 0
NAE (a) 0.04893] 0.05623| 0.06153 0.0768 0.0701]  0.02321
NAE (b) 0.01802|  0.02269 0.0256[  0.02655 0.0254]  0.00787
NAE (c) 1 1 1 1 1 1
L1 5.55501| 8.89908| 8.09459| 9.83887| 10.0232] 3.72678
L2 8.69094|  13.2563 12.0334| 132232 13.3034| 4.96885
L3 12.022{ 18.1218 16.4577|  16.4839 16.439| 6.15677
SC 1.01047 1.00357 1.00521 1.00708| 1.00713| 1.00108
NK 0.99253| 0.99518] 0.99419| 0.99143] 0.99237| 0.99901
CQ 144.003 181.835] 169.966 133.88] 150.059] 168.941
IF 0.99541] 0.99392] 0.99356| 0.98989| 0.99181] 0.99909
PMSE 0.00116 0.0027| 0.00223| 0.00299( 0.00281f  0.00038
NMSE (a) 0.00459] 0.00608| 0.00644| 0.01011} 0.00819] 0.00091
NMSE (b) 665.353| 944.842| 841.782] 629.572| 736.288] 864.252
NMSE (c) 243.01 219.77]  209.771 194.769 200.3| 367.685

Table C.12 Radiant Tin Compression, 64:1 Compression Ratio
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Image A B C D E F

AD 0.26194 0.0216( 0.04334| -0.02754] -0.05063| 0.01297
MD 136 172 181 118 125 49
LMSE 0.81236] 0.90136] 0.90823| 0.94418 0.93907| 0.59838
NAE (a) 0.05575| 0.06114] 0.06933] 0.08486; 0.07642| 0.02459
NAE (b) 0.02048| 0.02489] 0.02918] 0.02938{ 0.02797| 0.00831
NAE (c) 1 1 1 1 1 1
L1 6.32902| 9.67614 9.12056[ 10.8717 10.927)  3.94908
L2 10.4926] 147697} 14.0678| 14.7239| 14.7245| 5.35838
L3 15.2786f 20.5027; 19.6256| 18.3895| 18.4561f 6.73343
SC 1.01152]  1.00471 1.00528f 1.00653] 1.00514] 1.00082
NK 0.99097| 0.99388| 0.99297| 0.99049| 0.99243| 0.99906
CQ 143.776| 181.598| 169.759] 133.753| 150.068| 168.951
IF 0.99332| 0.99246 0.9912] 0.98747| 0.98997) 0.9989%4
PMSE 0.00169]  0.00335| 0.00304 0.0037| 0.00344| 0.00044
NMSE (a) 0.00668;  0.00754 0.0088; 0.01253] 0.01003; 0.00106
NMSE (b) 664.636| 943.747) 841.771] 629.944] 737.842] 864.487
NMSE (c) 242,717 219.528|  209.747 194.867| 200.696| 367.788

Table C.13 Wavelet Compression, 128:1 Compression Ratio
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Image A B C D E F

AD 0.0298| 0.04659| 0.08617| 0.00554| 0.09143| 0.07571
MD 162 202 202 126 149 93
LMSE 0 0}. 0 0 0 0
NAE (a) 0.09904| 0.08564{ 0.08828| 0.12321| 0.10757| 0.03524
NAE (b) 0.0357| 0.03264| 0.03412| 0.04238| 0.03883[ 0.01162
NAE (c) 1 1 1 1 1 1
L1 11.2437 13.554] 11.6134] 157857 15.3811f  5.65931
L2 17.9786| 20.9977| 19.0584| 21.3736] 20.9075| 8.14575
L3 24.7617 29.664| 27.9343| 26.4905| 26.5037| 10.7432
SC 1.02685 1.0188 1.01951 1.03049| 1.02462| 1.00398
NK 0.97711| 0.98315] 0.98236 0.972f 0.97788 0.9968
CQ 141766 179.637| 167.943| 131.256] 147.868] 168.568
IF 0.98038| 0.98475| 0.98385| 0.97359| 0.97978] 0.99756
PMSE 0.00497| 0.00678,  0.00559 0.0078]  0.00694/ 0.00102
NMSE (a) 0.01962] 0.01525| 0.01615] 0.02641] 0.02022] 0.00244
NMSE (b) 654.187{  930.132 829.5| 614.472] 723.126{ 861.644
NMSE (c) 239.136| 216.484| 206.827 190.35| 196.888(  366.636

Table C.14 Fractal Compression, 128:1 Compression Ratio
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Image A B C D E F

AD 0.33169] 0.08936{ -0.02704| 0.13259 0.0551]  0.00517
MD 138 191 207 139 137 99
LMSE 0 0 0 0 0 0
NAE (a) 0.06384| 0.06655| 0.07286|  0.10092 0.0789 0.0263
NAE (b) 0.02338| 0.02672 0.0299( 0.03479| 0.02864| 0.00885
NAE (c) 1 1 1 1 1 1
L1 724727 10.5322| 9.58463| 12.9302| 11.2808] 4.22329
L2 11.375]  15.9695 14765 17.6732] 15.1798] 5.75545
L3 15.8773| 22.2794} 20.8583[ 22.3526{ 19.0238]  7.28389
SC 1.01471 1.00646| 1.00674 1.0119] 1.00968, 1.00126
NK 0.98882| 0.99238] 0.99181 0.9851] 0.98988( 0.99876
CQ 143.465| 181.324] 169.559] 133.024] 149.682 168.9
IF 0.99214| 0.99118] 0.99031] 0.98195| 0.98934]  0.99878
PMSE 0.00199|  0.00392{ 0.00335| 0.00533| 0.00366] 0.00051
NMSE (a) 0.00786| 0.00882] 0.00969; 0.01805| 0.01066{ 0.00122
NMSE (b) 662.456] 942.056| 840.484| 626.475 734.36 864.09
NMSE (c) 241986 219.133] 209.443( 193.844] 199.792 367.62

Table C.15 Radiant Tin Compression, 128:1 Compression Ratio

97




98




APPENDIX D. QUALITATIVE EXPERIMENT SETUP

The script and a sample data collection sheet are provided in this appendix.

A. EXPERIMENT SCRIPT

The purpose of this experiment is to find the qualitative difference in a variety of
images, compressed using 4 compression algorithms at 4 compression ratios.

I will be showing you 6 different images. You will be asked to compare the images
for the ability to extract tactically relevant information from the images. The idea is not
which image is aesthetically more pleasing but which is better for extracting the tactical

information. The following scale will be used for this comparison.

Value Observation Definition

9 Image is the only image from which the
requested information can be exploited.

7 Image is significantly better for exploiting
the requested information

5 Image is somewhat better for exploiting the
requested information

3 Image is slightly better for exploiting the
requested information

1 There is no difference between the images
for exploiting the requested information

Here are the original 6 images and the tactical information that are specific items
that may be used for this comparison:

npgford11 - This image was taken by a digital handheld camera of Ford Island,

HI. Items to look for include:

¢ Airfield Control Tower

*+ 4 Helicopters on Airstrip

+ HMMWYV in front of Maintenance Building

* Open/Closed Bay Doors on Maintenance Building

* #549
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npglang3i - This image was taken by a TARPS imager of Langley Field. Items to
look for include:

+ Differentiate between Aircraft Type

¢ Grey vs. White Aircraft

¢ 6 White Aircraft

¢ Count Cars

* Buildings (Edges)

npglang8i - This image was taken by a TARPS imager of Langley Field. Items to
look for include:

+ Differentiate between Aircraft Type

¢ Helos in Lower Left

¢+ Helo on Pad - Upper Right
* Aircraft in Lower Right (White on White)

+APU Next to Planes in Upper Left

*Training Aircraft 2nd Row

npgLAX - This image was taken by a TARPS imager of LAX. Items to look for
include:

* Small Aircraft Right Side

¢ Cars in Parking Lots

+ Buildings Bottom of Image

*Terminal at Lower Left

* Small Aircraft Upper Left Terminal

npgpalm - This image was taken by a TARPS imager of Palmdale Airport. Items
to look for include:

* Aircraft Middle of Image

¢ White Plane - Upper Left

¢ Building with Half-plane
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* Count Cars
¢ Tank
¢ Maintenance Buildings

¢ Vehicles around Aircraft

npgslangn10 - This image was taken by a TARPS imager of a Shipyard near
Langley. Items to look for include:

* Which carrier (Hull number)

+ Submarines Upper Left

¢ Cranes

+ Flight Deck Status

¢ Differentiate Ship types

¢+ Buildings at Head of Pier

Finally, after each set of comparisons you will be asked to assign a level of
confidence to each individual image on your ability to extract the tactical information

from the image compared to the original image. The following scale will be used:

Image Confidence Description
0 I have no confidence in the ability to
extract tactical information from the image
25 I have some confidence in the ability to
extract tactical information from the image
50 I have moderate confidence in the ability to
extract tactical information from the image
75 I have a high confidence in the ability to
extract tactical information from the image.
100 I have full confidence in the ability to

extract tactical information from the image

Additionally, in some cases the images you will be comparing are exactly the same.

The purpose for this is for statistical control and please do not go out of your way to look
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for these pairs. They are random and may or may not occur in the process of this test.

Finally, again a reminder, the evaluation is to be made for which image is more useful for

extracting the tactical information, not which is more aesthetically pleasing.
NOTE: After each compression ratio,

"Again a reminder, the evaluation is to be made for which image is more useful for

extracting the tactical information, not which is more aesthetically pleasing."
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B. DATA COLLECTION SHEET

The table below is an abstract of the collection sheet used for the qualitative
experiment. Each image was randomly numbered to mask it's identity. The image pairs

were created using a random number generator.

Confidence Rating
Image Name | Image A | Image B Rating Image Rating

npgfordl1 57 39 39
85 57 57

85 39 85

npglang3i 63 40 17
63 17 40

17 40 63

npglang8i 64 82 109
64 109 64

109 82 82
npgLAX 16 61 61
61 11 16

16 11 11

npgpalm 87 110 42
110 42 87

42 87 110

npgslangn10 74 28 88
88 28 28

74 88 74

Table D.1 Example Data Collection Sheet
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